
Business Rules and
Object Role Modeling

D a t a b a s e P r o g r a m m i n g & D e s i g n , O c t o b e r 1 9 9 6 , r e p r i n t e d w i t h p e r m i s s i o n .

T
o capture fast-paced, com-
plex businesses, data model-
ers must consider methods
that go beyond traditional
ER diagramming.

In spite of remarkable progress in
computing technology, many businesses
are still struggling with the problem of
modeling and accessing data. Although
faster hardware and graphical interfaces
do help somewhat, they do not address
the problem’s fundamental cause. A
business is basically a complex, evolving
“organism”, about which we need to
communicate efficiently. So our language
for modeling and querying must be clear
yet detailed enough to capture the busi-
nessís complexity and remain easy to
change as the business evolves.

Happily, such a linguistic framework
already exists. It’s called Object Role
Modeling (ORM), and we’ll look at
some of the key features that distinguish
ORM from entity relationship (ER) and
object oriented (OO) approaches.

WHAT IS ORM?

ORM is a method for designing and
querying database models at the concep-
tual level, where the application is de-
scribed in terms readily understood by
users, rather than being recast in terms of
implementation data structures. This
high-level approach is philosophically in
tune with the business rules movement
evangelized by such industry leaders as
Barbara von Halle and Ron Ross.

Typically, a modeler develops an in-
formation model by interacting with
others who are collectively familiar with

the application. Because these subject
matter experts need not have technical
modeling skills, reliable communication
occurs by discussing the application at a
conceptual level, using natural language,
analyzing the information in simple
units, and working with instances (sam-
ple populations).

ORM is specifically designed to im-
prove this kind of communication. It
comes in a variety of flavors, including
natural language information analysis
method (NIAM), which is best known
in Europe, where the method originated
in the mid-1970s. Since then, ORM has
been extended and refined by researchers
in Australia, Europe, the U.S., and else-
where.

Unlike ER, which has dozens of dif-
ferent dialects, ORM has only a few di-
alects with only minor differences.

Object Role Modeling got its name
because it views the application world as
a set of objects (entities or values) that
plays roles (parts in relationships). We
sometimes call it fact-based modeling
because ORM verbalizes the relevant
data as elementary facts. These facts
canít be split into smaller facts without
losing information.

Suppose Table 1 includes data about
athletes competing in the recent
Olympic Games. For simplicity, assume
the athletes are identified by their names.
The first row contains two elementary
facts: the Athlete named “Ann Arbor”
represented the Country coded
“USA,”and the Athlete named “Ann Ar-
bor”was born in the Country coded
“USA”.The null value “?”indicates the
absence of a fact to record Bill Abbot’s
birthplace. All conceptual facts are ele-

D A T A B A S E P R O G R A M M I N G & D E S I G N

T E R R Y H A L P I N

To capture

fast-paced,

complex businesses,

data modelers

must consider

methods that

go beyond

traditional ER

diagramming

mentary rather than compound, so null
values do not feature in verbalization.

Although Table 1 includes five fact
instances, it has only two fact types: Ath-
lete represents Country; Athlete was
born in Country. Refer to Figure 1 to see
how this table is modeled in ORM. Two
object types, Athlete and Country, are
shown as named ellipses with their ref-
erence schemes in parenthesis: Athletes
are identified by their names, and coun-
tries are identified by codes (for example,
“USA”).

A role is a part played by an object in
a relationship and is shown as a box con-
nected to its object type. In the relation-
ship, Athlete represents Country, Ath-
lete plays the role of representing, and
Country plays the role of being repre-
sented.

You can permit the same fact to be
read in different directions (for example,
“Country is birthplace of Athlete”is just
the reverse reading of “Athlete was born
in Country”). ORM allows relationships
with one role (for example, Athlete
runs), two roles, three roles, or as many
roles as you like. Because facts are ele-
mentary, the number of roles rarely ex-
ceeds four.

Each role may be associated with a
column of the associated fact table. Fig-
ure 1 includes fact tables for both fact
types. Although sample populations are
very useful for checking and understand-
ing constraints, they are not part of the
conceptual schema itself.

The black dot is a mandatory role
constraint (each Athlete represents a
Country). The arrow-tipped bars are
uniqueness constraints (for example,
each Athlete represents at most one
Country).

NO ATTRIBUTES

Unlike ER modeling, ORM does not
use attributes. In ER, you might model
two fact types by saying the entity type
Athlete has the attributes “country-Rep-
resented”and “birthplace,”both of which
are based on the domain Country. If
youíre used to ER, you might think this
approach is a better way of doing things.
But itís not. Let’s see why.

The first problem with using attrib-
utes in the initial model is that they are
often unstable. Suppose we decide to add
the fact type: Country has Population.
This addition would now force us to
show Country as an entity type, so we
would have to replace our attribute por-
trayal by relationship types.

In ORM, all we have to do is add the
new fact type; nothing else changes, and
we have gained the added benefit of re-
vealing the conceptual object types (se-
mantic domains) that bind the schema
together. One major benefit is that con-

ceptual queries may now be formulated
in terms of continuous paths through the
schema. Moving from a role through an
object type to another role amounts to a
conceptual join. ER diagrams typically
omit domains, so you must look them
up in a table.

Another problem with attributes is
that they make it awkward to talk about
fact populations. ER diagrams are simply
too cumbersome for performing the
population checks that are so vital for
validating rules with clients.

Displaying some facts as attributes
and some as relationships leads to the re-
quirement for different notations to ex-
press the same kind of constraint or rule.
Apart from this unnecessary complexity,
some ER notations don’t let you express
a constraint on an attribute, even if that
constraint could be expressed with the
fact modeled as a relationship.

So donít agonize over whether to
model a particular feature as an attribute
or relationship. Just model it as a rela-
tionship. Does this mean you should
never use attributes? Not quite. When
designing or transforming a model, you
should avoid attributes. In other words,
you should delay making a commitment
on which features are less important than
others. However, once you have the full
model, it is possible to determine relative
importance; displaying less important
features as attributes can help provide a
compact view of the model.

ORM includes abstraction tech-
niques so that you can display “minor”
fact types as attributes. In fact, the best
way to obtain an ER diagram is by ab-
stracting it from an ORM schema

“MIXFIX N-ARIES”

A relationship with one role (for ex-
ample, runs, smokes) is unary. The rela-
tionships we saw in Figure 1 were binary
(two roles) with the verb phrase written

in “infix” position (between the objects).
Now look at Figure 2. The diagram
shows the ternary (three roles) fact type:
Room at Time is used for Activity. In
ORM, as in logic, a predicate is just a
sentence with object-holes in it. Each
object hole is shown as an ellipsis (“...”).

To allow natural expression in Eng-
lish as well as cater to other languages
(such as Japanese, where verbs usually
come at the end rather than in the mid-
dle), ORM allows “mixfix” predicates
(that is, the object holes can be mixed
into the predicate at any position). If you
fill each hole with an object term, you get
a sentence that is a fact instance. For ex-
ample, Room “23” at Time “Mon 9am” is
used for Activity “IM class.”

If a predicate is postfix unary (placed
after the object) or infix binary (inserted
between two objects), then the object
positions are known. In those cases,
predicates may omit the ellipses indicat-
ing object holes.

Figure 2 includes a sample popula-
tion for the ternary fact type. If this pop-
ulation is significant, then two unique-
ness constraints (as shown in the ORM
diagram) exist. The left-most constraint
says that the same Room at the same
time is used for at most one activity: This
statement is probably correct. The right-
most constraint says that at most one
room is used at the same time by any
given activity. This statement is possibly
correct.

For checking, you must carefully test
the constraint verbalization. To double

O C T O B E R 1 9 9 6

Athlete Country Birthplace
Ann Arbor USA USA
Bill Abbot UK ?
Chris Lee USA NZ

TABLE 1. Some data about athletes.

represents

was born in/is birthplace of

Athlete
(name)

Country
(code)

Ann Arbor USA
Bill Abbot UK
Chris Lee USA

Ann Arbor USA
Chris Lee NZ

Figure 1. Populated ORM diagram.

check, discuss counterexamples (extra
rows that would violate the constraint).
For example, to test the right-most con-
straint, you could add the row: (“50,
Mon 9am, TB demo”). The population
would then indicate that on Monday at 9
a.m. the Toolbook demonstration uses
both rooms 45 and 50. Is this kind of
thing possible? Testing fact instances
makes it easier for the domain expert to
confirm it one way or the other.

Notice how the ternary formulation
simplifies modeling and checking. With
typical ER and OO tools, you must
make the fact type binary by using arti-
ficial entity types (for example, Room-
Time or Time-Activity), which makes it
extremely awkward to populate and per-
haps impossible to express all the con-
straints. For example, using your favorite
ER notation, how would you capture the
Time-Activity uniqueness constraint?

Making all the facts binary is an un-
wanted burden. Why should you have to
break ternary rules into two stages and
worry about which pair to take first?
ORM lets you model such things natu-
rally without being restricted by infix bi-
nary straightjackets.

EXPRESSIVE RULE NOTATION

ORM has a rich language for ex-
pressing business rules, either graphically
or textually. Consider Figure 3, which
shows an ORM schema. A verbal ver-
sion of the constraints would begin with
three simple (n:1) uniqueness con-
straints: one compound (m:n) unique-
ness constraint and two mandatory role
constraints, as follows:

Each Employee has at most one Empname.
Each Project was directed by at most one
Employee.
Each Employee reports to at most one Em-
ployee.
It is possible that some Employee
assessed more than one Project and that
some Project was assessed by more than
one Employee.
Each Employee has some Empname.
Each Project was directed by some Em-
ployee.
No Employee directed and assessed the
same Project.
If Employee e1 reports to Employee e2,
then it cannot be that Employee e2 reports
to Employee e1.

The circled “X” in Figure 3 is a pair-
exclusion constraint: No Employee-Pro-
ject pair may occur in both the director
and assessment predicates. This fact is
verbalized as “No Employee directed and
assessed the same Project.” For example,
the constraint is violated if we populate
the fact types with: “e1 directed p1”; “e1
assessed p1.”

Finally, the ring symbol with “as” is an
asymmetric constraint. You canít report
to yourself or to someone else who re-
ports to you, which is verbalized as: “If
Employee e1 reports to Employee e2,
then it cannot be that Employee e2 re-
ports to Employee e1.” Because e1 and
e2 are not necessarily distinct, this in-
cludes the irreflexive case (you can’t re-
port to yourself).

The fact type “Employee reports to
Employee” is a ring relationship, in
which both roles are played by the same
object type. ORM includes other ring
constraints such as intransitivity and
acyclicity.

Figure 4 illustrates a few more ORM
constraints. Each employee is either on
contract or tenured but not both, as
shown by the black dot connecting the

two relevant roles and the exclusion con-
straint between them.

The circled “u” is an external unique-
ness constraint, indicating that Emp-
name-Dept combinations are unique
(that is, within the same department,
employees have distinct names). The
dotted arrow is a pair-subset constraint:
Each manager who heads a department
also works for the same department.

The thick arrow indicates that Man-
ager is a subtype of Employee. In ORM,
subtypes should be well defined (for ex-
ample, each Manager is an Employee
who has Rank “mgr”). ORM also sup-
ports multiple inheritance. For example,
we might introduce another subtype
ContractEmployee, and then Contract-
Manager, which is a subtype of both
ContractEmployee and Manager.

ORM conceptual schemas basically
comprise fact types, constraints, and de-

D A T A B A S E P R O G R A M M I N G & D E S I G N

Empname Employee
(empnr)

Project
(nr)

is of/has

as

reports to/supervises

assessed/was assessed by

directed/was directed by

X

Figure 3. Graphical rule notation in ORM.

Rank
(code)

Employee
(empnr)

Manager

{'junior,' 'senior,' 'mgr'}

is tenured

is contracted til

has

works for/employs

heads

has

u

Date
(mdy)

Dept
(code)

Empname

Figure 4. Further constraint examples.

Room
(nr)

Time
(dh)

Activity
(name)

23 Mon 9am IM class
23 Mon 4pm TB demo
23 Tue 2pm IM class
45 Mon 9am TB demo

… at … is used for …

Figure 2. A ternary fact type.

rivation rules. Derivation rules may be
arithmetic or logical. For example, the
fact type “Dept has NrStaff ” may be de-
rived by counting instances of “Em-
ployee works for Dept.” The fact type
“Manager manages Employee” may be
derived from the path “Manager heads a
Dept that employs Employee.”

By now you might be getting the feel-
ing that ORM is too complicated. Actu-
ally, it’s not. This stuff is taught to school
kids back in my home state, and I’ve al-
ready shown you most of the graphic
symbols. Because we express all facts in
the same way, using roles, the notation is
both uniform and simple to populate. So
itís easy to illustrate a lot of business
rules that actually apply to your business.

SCHEMA TRANSFORMS

Although the fact-based approach
gives greater schema stability, it is still
possible to describe the same feature in
different ways. For implementation,
ORM schemas are usually mapped to re-
lational database schemas, in which
many fact types may be grouped into a
single table. Different but equivalent
ORM schemas may map to different tar-
get schemas, which differ in efficiency.

Semantic optimization may often be
performed before the mapping takes
place. ORM includes a vast array of
schema transformations as well as opti-
mization heuristics to determine which
transformations to use. For a trivial ex-
ample, see the ORM schema in Figure 5.
This schema deals with teams that are
mixed doubles (one of each sex). The “2”
is a frequency constraint: If a team has
any players recorded, then it must have
two players recorded.

By default, Figure 6 maps to two re-
lational tables, one for Player and one for
Team. For optimization, the original
conceptual schema may be transformed
into Figure 5 before mapping. Here the
Sex object type has been absorbed into
the team membership predicate, special-
izing it into two predicates, one for each
sex.

This new schema maps to only one
table (Team). If no other facts are
recorded about Players, this new schema
is more efficient, because queries and up-
dates involve just one table, with no need
for a join or referential integrity check.

Note the importance of a rich con-
straint language. To ensure that the
schemas in Figures 5 and 6 actually are
equivalent, we must be able to transform
any constraints in one to constraints in

the other. For example, the frequency
constraint “2” is transformed into an
equality constraint (shown as a dotted
line with arrows at both ends) that says a
team has a male player if and only if it
has a female player.

The uniqueness constraint that each
player is of at most one sex is trans-
formed to an exclusion constraint be-
tween the two roles of Player. The exter-
nal uniqueness constraint (for each sex
and team there is at most one player)
reappears as two simple uniqueness con-
straints on the first roles of the has-male
and has-female predicates.

ORM’s expressive rule language and
rigorous transformation theory provide
a powerful, controlled means to reshape
and semantically optimize data models.

DESIGN METHOD

Like any good modeling method,
ORM is far more than a notation. It in-
cludes various design procedures to help
modelers develop and evolve their con-
ceptual models.

For analysis and design, we divide
large applications into appropriately

sized modules and then model them us-
ing the conceptual schema design proce-
dure (CSDP). Finally, the various sub-
schemas obtained in this way are merged
into a global schema. The CSDP itself
has seven main steps:

1. Transform familiar examples into
elementary facts, and apply quality
checks.

2. Draw the fact type, and apply a
population check.

3. Check for entity types that should
be combined, and note any arithmetic
derivations.

4. Add uniqueness constraints, and
check arity (number of roles) of fact
types.

5. Add mandatory role constraints,
and check for logical derivations.

6. Add value, set comparison, and
subtyping constraints.

7. Add other constraints, and perform
final checks.

You can find full explanations of this
procedure in the reference section. The
key to the CSDP’s success is that it be-
gins by verbalizing familiar information

examples in terms of simple facts. No
matter how information is presented (ta-
bles, forms, graphs, and so on), it is al-
ways possible to conceptualize it in this
way.

For example, a set of employee forms
like that shown in Table 2 could have
been used as input to the verbalization
that eventually resulted in the schema
shown earlier in Figure 3.

RELATIONAL MAPPING

ORM includes procedures for map-
ping and reverse engineering between
conceptual models and logical models.
By “logical models,” I mean implemen-
tation data models such as relational,
network, hierarchic, nested relational,
and various object-oriented models.

With an ORM tool, ORM models
can be automatically mapped to database
schemas for implementation on most

O C T O B E R 1 9 9 6

Player
(name)

Team
(name)

Sex
(code)

{'M,' 'F'}

Country
(code)

is
in u

is of

represents

2

Figure 5. One way to model.

EmployeeNr: 203101
Empname: Terry O’Farrell
Supervisor:
Projects Directed: 51, 65, 73, 84
Projects assessed:70, 76

TABLE 2. An employee form.

Player
(name)

Country
(code)

Team
(name)

has male-

has female-

represents

Figure 6. An equivalent model.

D A T A B A S E P R O G R A M M I N G & D E S I G N

popular relational DBMSs. For example,
the ORM schema in Figure 3 maps to a
relational schema that can be specified in
SQL-92. For simplicity, referential ac-
tions are omitted, and the exclusion and
asymmetry constraints are shown as as-
sertions. Depending on the target sys-
tem, these assertions might be coded as
the following insert triggers or stored
procedures:

create table Employee(
empnr smallint not null

primary key,
empname varchar(20) not null,
supervisor smallint

references Employee)

create table Project(
projectnr smallint not null

primary key,
director smallint not null

references Employee)

create table Assessment(
empnr smallintnot null

references Employee,
projectnr smallint not null

references Project,
primary key(empnr, projectnr))

create assertion “Nobody directed and
assessed the same project”

check(not exists(select *
from Project X, Assessment Y

where X.director = Y.empnr
and X.projectnr = Y.projectnr))

create assertion “Reporting is
asymmetric”

check(not exists(select *
from Employee X, Employee Y
where X.empnr = Y.supervisor

and X.supervisor = Y.empnr))

OBJECT ORIENTATION

A lot of people have been discussing
so-called object oriented approaches to
information systems modeling. Al-
though object oriented programming
has advantages over traditional program-
ming, OO techniques do not provide the
best basis for information modeling.

OO modeling includes a mixture of
conceptual, external, and internal con-
cepts. Some OO concepts, such as sub-
typing, belong to the conceptual level.
Some other aspects, such as hidden ob-
ject identifiers, are not conceptual be-
cause they are not part of human com-
munications in the application world.

OO models, as well as ER and rela-
tional models, complicate things by
grouping facts into attribute structures
(for example, “objects” and tables). When
validating facts with clients, it is prefer-
able to deal with one fact at a time. A
base ORM schema provides the simplest
way of validating facts.

Suppose our Employee-Project appli-
cation is intended to handle forms or re-
ports like those in Tables 2 and 3.

Some modelers see forms like this
and immediately want to model the in-
formation in the way the form is struc-
tured. This perspective leads to an OO
approach. For example, the application
might be modeled as Employee and Pro-
ject objects (Figure 7):

Here unique attributes are under-
lined, optional attributes are enclosed in
square brackets, and set-valued attributes
are enclosed in curly brackets.

This schema is further away from
natural verbalization and does not facil-
itate sample populations (consider
checking the uniqueness constraints).
Moreover, the director fact type is repre-
sented twice, once as the set-valued {pro-
jectsDirected} attribute of Employee and
again as the director attribute of Project.
The same is true of the assessment fact
type.

Although this fact type redundancy
may be acceptable as a way to implement
the model—for example, in an OO data-
base we might do it this way, with for-

ward pointers kept synchronized with
the inverse pointers—this portrayal is
clearly not conceptual.

The same application may be mod-
eled in ORM as in Figure 3, if we add
the fact type: “Project has ProjectTitle.”
For discussion purposes, part of the
model is reproduced in Figure 8.

Note that the exclusion constraint is
missing from the OO model. Such con-
straints are not supported directly and
must be coded up separately. Even if the
exclusion constraint were added, where
would we put it?

The OO philosophy is to wrap con-
straints up inside objects. We could em-
bed it in just the Employee or the Project
object; however, at least conceptually, we
would forget about it when viewing the
other object.

We could embed it in both objects
and take care to synchronize this con-
straint redundancy. This approach is
quite nasty because the constraint must
be treated differently in the two objects.
In Employee, the constraint is enforced
by ensuring the intersection of projects-
Directed and projectsAssessed is empty.
In Project, it is enforced by ensuring di-
rector is not a member of assessors.
What has this got to do with conceptu-
alizing the application?

Finally, we could fudge by creating
another superobject in which to embed
the constraint, but this is even more of an
implementation issue. Modeling an ap-
plication is hard enough even at the con-
ceptual level. We certainly don’t want to
complicate this task by simultaneously
worrying about implementation details.

The solution is using ORM first to
do the conceptual model, getting all the
benefits of its simplicity, populatability,
and richness, and then using it to apply
mapping procedures to generate other
views (such as ER, RM, and OO).

If you’re still not convinced, consider

ProjectNr: 51
ProjectTitle: Nuclear Fusion
Director: 203101
Assessors: 105123

107200

TABLE 3. A project form.

Employee
empnr
empname
[supervisor]
{projectsDirected}
{projectsAssessed}

Project
projectnr
projectTitle
director
{assessors}

Figure 7. Employee and Project objects.

Employee
(empnr)

Project
(nr)

directed/was directed by

assessed/was assessed by

Figure 8. A model fragment.

M O N T H 1 9 9 6

the problem of schema evolution. For ex-
ample, we might have originally de-
signed our application to have only one
assessor for each project. In ORM, the
only change is the uniqueness constraint
on the assessment fact type (see Fig-
ure 9).

If mapped to a relational schema, the
change is more dramatic. For example,
the separate Assessment table is elimi-
nated in favor of an assessor column in
the Project table, and the exclusion con-
straint is coded as the clause: “check(as-
sessor <> director).”

In an OO schema, the {assessors} at-
tribute is replaced by a simple assessor
attribute, and the exclusion constraint in
the Project object must be coded as an
inequality instead of nonmembership.
Apart from the constraint change, access
to assessment facts is now quite different.

CONCEPTUAL QUERIES

Apart from conceptual modeling,
ORM is ideal for performing queries at
the conceptual level. Using an ORM
query tool, you can query a database
without any knowledge of how the facts
are grouped into implementation struc-
tures.

Suppose you want to list the titles of
those projects that have an assessor. This
request may be formulated as the follow-
ing ORM query: “List the ProjectTitle
of each Project that was assessed by an
Employee.”

If a project has at most one assessor
(as shown in Figure 9), this query gener-
ates the following SQL:

select projectTitle from Project
where assessor is not null

Suppose the application evolves to al-
low more than one assessor per project
(as shown in Figure 8). You do not need
to change the ORM query, because con-
straints have nothing to do with the
meaning of our query. Underneath the
covers, however, the relational structures
have changed and the following SQL
query is generated:

select X1.projectTitle
from Project X1, Assessment X2
where X1.projectnr = X2.projectnr

We can easily formulate more sub-
stantial queries as conditioned paths
through ORM space. To sum up, ORM
simplifies modeling and query formula-
tion and minimizes the impact of
schema evolution. With the develop-
ment of ORM tools, the beginning of
the semantic revolution has at last ar-
rived.

REFERENCES

“Black Belt Design,” DBMS, 8(10),
September 1995.

Halpin, T.A. Conceptual Schema and
Relational Database Design, 2nd edition.
Prentice Hall Australia, 1995.

Halpin, T.A. “Object-Role Modeling:
An Overview.”

Terry Halpin, Ph.D, was the head of research
for the Database Division at Asymetrix Corp. and a
senior lecturer in computer science at the Univer-
sity of Queensland at the time of this writing. He
is currently Director of Database Strategy at Visio
Corporation .

Employee
(empnr)

Project
(nr)

directed/was directed by

assessed/was assessed by

Figure 9. A minor change

