
1

PATIENT

INPATIENT

Patient

InPatient

Patient

InPatient

(a) (b) (c)

Verbalizing Business Rules: Part 13

Terry Halpin
Neumont University

Business rules should be validated by business domain experts, and hence specified in a language easily
understood by business people. This is the thirteenth in a series of articles on expressing business rules
formally in a high-level, textual language. The first article [3] discussed criteria for a business rules
language, and verbalization of simple uniqueness and mandatory constraints on binary associations. Article
two [4] examined hyphen-binding, and verbalization of internal uniqueness constraints that span a whole
association, or that apply to n-ary associations. Article three [5] covered verbalization of basic external
uniqueness constraints. Article four [6] considered relational-style verbalization of external uniqueness
constraints involving nesting or long join paths, as well as attribute-style verbalization of uniqueness
constraints and simple mandatory constraints. Article five [7] discussed verbalization of mandatory
constraints on roles of n-ary associations, and disjunctive mandatory constraints (also known as inclusive-
or constraints) over sets of roles. Article six [8] considered verbalization of value constraints. Article seven
[9] examined verbalization of subset constraints. Article eight [10] discussed verbalization of equality
constraints. Article nine [11] covered verbalization of exclusion constraints. Article ten [12] dealt with
verbalization of internal frequency constraints on single roles. Article eleven [13] considered verbalization
of multi-role, and external, frequency constraints. Article twelve [14] discussed verbalization of ring
constraints. This article covers verbalization of basic subtype constraints.

Basic Subtype Constraints

The act of classifying an object type into one or more specific types is known as specialization. In Object-
Role Modeling (ORM) [2] and Entity-Relationship (ER) modeling, the specialized types are said to be
subtypes of the more general type (the supertype). For example, InPatient and OutPatient are subtypes of
the supertype Patient. In the Unified Modeling Language (UML) [16, 17], “class” is used instead of “type”,
so the terms “subclass” and “superclass” are used instead. The inverse act of introducing a more general
type is known as generalization. Regardless of whether the inclusion of a subtype within a supertype is
arrived at by means of specialization or generalization, the resulting model is the same. The inclusion
relationship between a subtype and its supertype is known as a subtyping or inheritance relationship. Figure
1 depicts the subtyping relationship between InPatient and Patient in the graphical notations of (a) ORM,
(b) UML, and (c) Barker ER [1].

Figure 1 Declaring InPatient as a subtype of Patient in (a) ORM, (b) UML, and (c) Barker ER.

Both ORM and UML display the subtyping relationship as an arrow from the subtype to the
supertype. With this approach, a pattern of subtype-supertype relationships forms a directed acyclic graph.
The graph is acyclic (no loops), because only proper subtypes are allowed (i.e. a subtype is never identical
to any of its supertypes). The Barker ER notation depicts subtyping by means of Euler diagrams, visually
enclosing the subtype within the supertype. The subtype-to-supertype relationship is between types, not
instances, so is a meta-relationship. This type inclusion relationship is a constraint, declaring that each
instance of the subtype is also an instance of the supertype. The subtype connection in Figure 1 may be
verbalized as follows:

2

PATIENT

INPATIENT
Patient

InPatient

Patient

InPatient

(a) (b) (c)

OutPatient OutPatient
OUTPATIENT

(d)

Patient

InPatient OutPatient

{complete, disjoint}
{complete,
disjoint}

Each InPatient is a Patient.

This verbalization is just a sugared version of the predicate calculus formula: x(InPatient x Patient x).
In set-theory notation, this corresponds to the subset relationship InPatient Patient, although to ensure
proper subtypehood we need to add the restriction InPatient Patient. In practice, the constraint requires
that for each state of the business domain, the population of InPatient is a subset of the population of
Patient.

In several versions of ER, including Barker ER, subtype classification schemes must always form a
partition of the supertype (i.e. the subtypes are mutually exclusive, and they collectively equal the
supertype). For example, InPatient and OutPatient form a partition of Patient. The mutual exclusion
between the subtypes may be expressed in set-theory by declaring their intersection to be the null set (i.e.
InPatient OutPatient = { }). The claim that the subtypes are collectively exhaustive of their supertype
means that their union equals their supertype (InPatient OutPatient = Patient). In practice, these
constraints apply to the populations of the types, for each state of the business domain.

Figure 2(a) depicts this partition in the ORM notation. Here a circled cross attached to the subtyping
arrows indicates that the subtypes are exclusive, and a circled dot indicates that the subtypes are exhaustive.
The two constraints are displayed together, one superimposed on the other, forming a “lifebuoy” symbol.
This symbol may be considered as an xor (exclusive-or) constraint on the upper roles of the meta-fact
instances corresponding to the subtyping arrows.

Figure 2 A Patient partition in (a) ORM, (b) UML direct style, (c) UML tree style, (d) Barker ER.

Figure 2(b) depicts the partition in UML in direct style (where each inheritance relationship appears as
a separate arrow). The relevant constraints appear in braces besides a dashed line connecting the subtyping
arrows: “complete” indicates that the Patient class is the union of the subclasses; “disjoint” indicates the
subclasses are mutually exclusive. Figure 2(c) depicts the partition in UML in tree style (connecting the
subtypes to the supertype via a single arrow head). In this case, the constraints are placed in braces besides
the arrow-head.

Figure 2(d) depicts the partition in Barker ER notation. As with normal Euler diagrams, the exclusion
between the subtypes is depicted by their separation (no visual overlap). The Barker ER notation always
assumes that the subtypes are exhaustive (if needed, an additional “Other” subtype may be added to ensure
this).

Regardless of the graphic notation used, the two constraints conveying the total (exhaustive) and
exclusive nature of the subtypes in Figure 2 may be verbalized separately as follows:

Each Patient is an InPatient or an OutPatient. -- totality
No Patient is an InPatient and an OutPatient. -- exclusion

Here the use of “an” assumes the ability to determine that the following object type name begins with a
vowel sound. If the object type name begins with a consonant sound, then “a” is used instead of “an”. If
such support is not provided, then “a” is always used. The two constraints may also be combined in a
compact, single verbalization as follows:

Each Patient is an InPatient or an OutPatient but not both. -- partition

3

A

B C D

F

{disjoint}

{overlapping}{overlapping}

A

B C D

F

{incomplete}

G GEE

{complete} {complete, disjoint}

(b)(a)

If more than two subtypes occur in the partition, the totality constraint may be verbalized by a simple
extension to the previous pattern. For example, assuming the only possible marital states are single,
married, divorced, and widowed, we have:

Each Person is a SinglePerson or a MarriedPerson or a WidowedPerson or a DivorcedPerson. -- totality

Alternatively, this constraint may be verbalized:

Each Person is an instance of at least one of the following:
SinglePerson; MarriedPerson; WidowedPerson; DivorcedPerson. -- totality

An exclusion constraint over more than two subtypes means pairwise-exclusion (i.e. no instance may
belong to any pair of subtypes). So the earlier verbalization pattern for exclusion between two subtypes has
no simple extension for this case. Instead we use the alternative pattern just discussed for totality, but
replace “least” by “most”. For example, assuming the four marital states just mentioned are mutually
exclusive, we have:

Each Person is an instance of at most one of the following:
SinglePerson; MarriedPerson; WidowedPerson; DivorcedPerson. -- exclusion

The two constraints may be combined into a single verbalization as follows:

Each Person is an instance of exactly one of the following:
SinglePerson; MarriedPerson; WidowedPerson; DivorcedPerson. -- partition

These patterns for the case of more than two subtypes may also be used for the simpler case of two
subtypes.

In ORM, the absence of an explicit or implicit exclusion constraint between subtypes means the
subtypes may overlap (i.e. have some instances in common). In UML, this situation is depicted by the
annotation “{overlapping}”. In ORM, the absence of an explicit or implicit totality (exhaustion, i.e.
inclusive-or) constraint between subtypes means the union of the subtype populations need not equal the
supertype population. In UML, this situation is depicted by the annotation “{incomplete}”. Figure 3
illustrates this practice using equivalent examples in ORM and UML taken from [2].

Figure 3 Equivalent subtyping patterns in (a) ORM and (b) UML.

Barker ER does not cater for cases like this. As a simple example, consider a case of multiple
inheritance as shown in Figure 4. Here FemaleInPatient is a subtype of the overlapping FemalePatient and
InPatient types. While such cases are supported directly in ORM and UML, Barker ER requires partitions
for all subtype classifications, so the only possible approach it could adopt would be to use two separate
diagrams for the two partitions; but even then it is unable to include FemaleInPatient as subtypes of both
FemalePatient and InPatient. This is the main problem with using Euler diagrams for subtyping, especially
the restricted version of Euler diagrams supported in Barker ER: for simple partitions they are more
visually intuitive than directed acyclic graphs, but for more complex cases they are inadequate or unwieldy.
For a related example showing problems with unrestricted Euler diagrams, see [2 , p. 246].

4

Person

Australian

Person

Australian

(a) (b)

MalePerson MalePerson

{overlapping, incomplete}

Patient

InPatient

(a) (b)

OutPatient
Male

Patient
Female
Patient

Female
InPatient

Patient

InPatient OutPatient

{complete,disjoint}

Male
Patient

Female
Patient

Female
InPatient

{complete,disjoint}

Figure 4 A case of multiple inheritance in (a) ORM and (b) UML.

Returning to UML’s “{overlapping}” and “{incomplete}” annotations, these are not really constraints
at all (they instead indicate lack of constraints). So they have no positive verbalization. If desired however,
a default verbalization could be provided to spell out the implications of the absence of a subtype totality or
exclusion constraint. For example, suppose that for some reason we wished to include Australian and
MalePerson as subtypes of Person, as shown in Figure 5. These subtypes overlap, since it is possible to
have male Australians; and the subtypes are incomplete since there may be instances of Person that belong
to neither subtype (e.g. an American woman).

Figure 5 Overlapping, incomplete subtypes in (a) ORM, and (b) UML.

For this example, the absence of completeness and exclusion constraints may be explicitly declared by
the following default verbalizations.

It is possible that some Person is an instance of more than one of the following:
Australian; MalePerson. -- overlap

It is possible that some Person is an instance of none of the following:
Australian; MalePerson. -- incomplete

That completes our coverage of basic subtype constraints. It turns out that these constraints provide
only an incomplete coverage of the constraints that may apply in realistic subtyping situations. To handle
more complex cases, it is necessary to provide formal support for subtype definitions. Verbalization of
subtype definitions is addressed in the next article.

5

References

1. Barker, R. 1990, CASE*Method: Tasks and Deliverables, Addison-Wesley, Wokingham, England.
2. Halpin, T. A. 2001, Information Modeling and Relational Databases, Morgan Kaufmann, San

Francisco.
3. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 1’, Business Rules Journal, Vol. 4, No. 4 (April

2003), URL: http://www.BRCommunity.com/a2003/b138.html.
4. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 2’, Business Rules Journal, Vol. 4, No. 6 (June

2003), URL: http://www.BRCommunity.com/a2003/b152.html.
5. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 3’, Business Rules Journal, Vol. 4, No. 8

(August 2003), URL: http://www.BRCommunity.com/a2003/b163.html.
6. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 4’, Business Rules Journal, Vol. 4, No. 10

(October 2003), URL: http://www.BRCommunity.com/a2003/b172.html.
7. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 5’, Business Rules Journal, Vol. 5, No. 2

(February 2004), URL: http://www.BRCommunity.com/a2004/b179.html.
8. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 6’, Business Rules Journal, Vol. 5, No. 4 (April

2004), URL: http://www.BRCommunity.com/a2004/b183.html.
9. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 7’, Business Rules Journal, Vol. 5, No. 7 (July,

2004), URL: http://www.BRCommunity.com/a2004/b198.html.
10. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 8’, Business Rules Journal, Vol. 5, No. 9

(September, 2004), URL: http://www.BRCommunity.com/a2004/b205.html.
11. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 9’, Business Rules Journal, Vol. 5, No. 12

(December, 2004), URL: http://www.BRCommunity.com/a2004/b215.html.
12. Halpin, T. A. 2005, ‘Verbalizing Business Rules: Part 10’, Business Rules Journal, Vol. 6, No. 4

(April, 2005), URL: http://www.BRCommunity.com/a2005/b229.html.
13. Halpin, T. A. 2005, ‘Verbalizing Business Rules: Part 11’, Business Rules Journal, Vol. 6, No. 6 (June

2005), URL: http://www.BRCommunity.com/a2005/b238.html.
14. Halpin, T. A. 2005, ‘Verbalizing Business Rules: Part 12’, Business Rules Journal, Vol. 6, No. 10

(October 2005), URL: http://www.BRCommunity.com/a2005/b252.html.
15. Halpin, T., Evans, K., Hallock, P. & MacLean, B. 2003, Database Modeling with Microsoft Visio for

Enterprise Architects, Morgan Kaufmann, San Francisco.
16. Object Management Group 2003, UML 2.0 Infrastructure, URL: http://www.omg.org/uml.
17. Object Management Group 2003, UML 2.0 Object Constraint Language, URL:

http://www.omg.org/uml.

http://www.brcommunity.com/a2003/b138.html
http://www.brcommunity.com/a2003/b152.html
http://www.brcommunity.com/a2003/b152.html
http://www.brcommunity.com/a2003/b172.html
http://www.brcommunity.com/a2004/b198.html
http://www.brcommunity.com/a2005/b229.html
http://www.brcommunity.com/a2005/b238.html

