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This is the ninth in a series of articles on ontology-based approaches to modeling. The main focus is on 
popular ontology languages proposed for the Semantic Web, such as the Resource Description Framework 
(RDF), RDF Schema (RDFS), and the Web Ontology Language (OWL). OWL is based on description 
logic. A later series of articles will explore other logic-based languages such as datalog. The first article [2] 
introduced ontologies and the Semantic Web, and covered basic concepts in the Resource Description 
Framework (RDF), contrasting them with other data modeling approaches. The second article [3] discussed 
the N3 notation for RDF, and covered the basics of RDF Schema. The third article [4] provided further 
coverage of RDFS, and introduced different flavors of the Web Ontology language (OWL). The fourth 
article [5] discussed basic features of OWL, mainly using Manchester syntax. The fifth article [6] discussed 
OWL taxonomy, comparison operators for classes, data types and predicates, and examined inverses, 
functional roles and keys in more depth. The sixth article [7] covered cardinality restrictions in OWL 2. 
The seventh article [8] discussed the union, intersection, and complement operators in OWL 2. The eighth 
article [9] explored support for ring constraints within OWL 2. The current article discusses enumerated 
types as well as value restrictions on properties in OWL 2. 
 
 
Enumerated Types in OWL 2 
 
Recall that in OWL, entities are identified by Internationalized Resource Identifiers (IRIs), and are grouped 
into classes (e.g. Person, Book) to indicate their type(s). In contrast, literals (data values such as names or 
numbers) are grouped into datatypes (e.g. xsd:string, xsd:nonNegativeInteger). An earlier article [8] 
discussed how to define a new class or datatype by specifying its intension (i.e. meaning) in terms of 
operations on classes or datatypes that are already declared. A type definition that specifies the necessary 
and sufficient conditions for an item to be a member of the type is said to be an intensional definition of the 
type. For example, Table 1 provides intensional definitions for StudentEmployee and PassGradeNr, in both 
Manchester and Turtle syntax, assuming that the types referenced (Student, Employee, GradeNr, 
FailGradeNr) have been previously declared.  
 

Table 1 Defining new classes or datatypes by specifying their intension (meaning) 

Manchester Syntax Turtle Syntax 

Class: StudentEmployee 
  EquivalentTo:  Student and Employee 

:StudentEmployee  a  owl:Class; 
    owl:intersectionOf(:Student  :Employee). 

Datatype: PassGradeNr 
  EquivalentTo:  GradeNr and not FailGradeNr 

:PassGradeNr  a  rdfs:Datatype; 
    owl:intersectionOf(:GradeNr   
        [  owl:datatypeComplementOf  :FailGradeNr ] ). 

 
 
 The set of all possible instances of a type is said to be the extension of the type. If a class or data range 
is composed of a known, finite set of items, it may be defined by enumerating (i.e. listing) those items. For 
example, while EvenDigit could be defined intensionally as {x | x is a digit that is divisible by 2} it could 
also be defined extensionally as a member of {0, 2, 4, 6, 8}. A type that is defined by enumerating its 
extension is said to be an enumerated type, and its definition is said to be an extensional definition. In 
Manchester syntax, the usual set notation is used to specify the extension, using braces as set delimiters and 
commas as element separators. Turtle syntax instead uses parentheses as set delimiters, spaces as element 
separators, and owl:oneOf for the set membership operator. Table 2 provides some examples in both 
syntaxes. 
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Table 2  Defining finite classes or datatypes by specifying their extension (set of possible instances) 

Manchester Syntax Turtle Syntax 

Class: Weekday 
  EquivalentTo: { Monday, Tuesday, 
       Wednesday, Thursday, Friday } 

:Weekday  a  owl:Class; 
     owl:oneOf (:Monday  :Tuesday 
               :Wednesday  :Thursday  :Friday ). 

Datatype: EvenDigit 
  EquivalentTo: {0, 2, 4, 6, 8} 

:EvenDigit  a  rdfs:Datatype; 
     owl:oneOf ( 0  2  4  6  8 ). 

 
 
“Value” Restrictions on Predicates 
 
In its treatment of “value restrictions”, OWL uses the term “value” loosely to mean either an individual 
entity or a literal. Given this understanding, a named class or (unnamed) class expression may be defined as 
the subject of a predicate whose range is restricted to include: 

 some specific value  
 some value from a specified class or data range 
 only values from a specified class or data range  

 
We consider these cases in turn. Figure 1 depicts a binary relation R from a set A to a set B, with 

elements of the domain and range of the relation depicted as colored dots. Each member of the subset C 
relates via R to at least the value v in B. So C = {x | xRv}. As shown in the depiction, it is possible that an 
element of C relates not just to v but also some other element of B. However, each element of C must relate 
at least to v. 

 
 
 
 
 
 

 

Figure 1 C is restricted to those A domain items that relate via R to at least the value v in the range B.  

 
 In Manchester syntax, the set of all elements that relate via R to the value v is expressed simply as “R 
value v”. In Turtle syntax, this is expressed as “[  owl:Restriction;  owl:onProperty  :R;  owl:hasValue  :v]. 
As a simple example, consider the data model in Figure 2, shown in the notations of both Object-Role 
Modeling (ORM) [1] and the Unified Modeling Language (UML) [10]. Here, MalePerson is a derived 
subtype, whose instances are restricted to those instances of Person that have male gender. The UML 
subclass definitions are presented as informal notes.  
 
 
 
 
 
 
 
 
 

Figure 2	 Restricting MalePerson to Person instances that have male gender in (a) ORM and (b) UML.  

 
Treating Gender as an enumerated class of two individuals (male and female), these subtype 

definitions may be captured in OWL as shown in Table 3. For simplicity, other aspects of the data model 
are omitted in the OWL code (e.g. the mandatory, functional nature of the hasGender predicate). 
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Table 3 Defining MalePerson in OWL as a restriction on the domain of the hasGender predicate 

Manchester Syntax Turtle Syntax 

Class: Gender 
  EquivalentTo: { male, female } 
Class: MalePerson 
  EquivalentTo: Person and 
                          hasGender value male 

:Gender  a  owl:Class; 
               owl:oneOf (:male  :female). 
:MalePerson  owl:intersection  (:Person    
    [  a owl:Restriction; 
       owl:onProperty  :hasGender; 
       owl:hasValue  :male ] ). 

 
Now consider Figure 3, which depicts a binary relation R from a set A to a set B. In this case, each 

member of the subset C relates via R to some value in D, a subset of B. So C = {x | y(y  D & xRy)}.   
 
 
 
 
 

 
 

Figure 3  C is restricted to those A domain items that relate via R to some value in the subrange D.  

 
In Manchester syntax, the set of all elements that relate via R to some value in a specified subrange D 

is expressed simply as “R some D”. In Turtle syntax, this is expressed as “[  owl:Restriction;  
owl:onProperty  :R;  owl:someValuesFrom  :D]. As a simple example, consider the subtyping data model 
in Figure 4, shown in both ORM and UML notation. Here, Driver is a derived subtype, whose instances are 
restricted to those instances of Person who drive some vehicle. 

 
 
 
 
 
 
 
 
 

Figure 4  Restricting Driver to Person instances that drive some Vehicle in (a) ORM and (b) UML. 

 
These subtype definitions may be captured in OWL as shown in Table 4. In this case, the subrange 

Vehicle is the same as the range.  
 

Table 4  Defining Driver in OWL as a restriction on the domain of the drives predicate 

Manchester Syntax Turtle Syntax 

ObjectProperty: drives 
  Domain: Person 
  Range: Vehicle 
Class: Driver 
  EquivalentTo: Person and 
                          drives some Vehicle 

:drives  rdfs:domain  :Person. 
:drives  rdfs:range  :Vehicle. 
:Driver  owl:equivalentClass   
 [  a owl:Restriction; 
    owl:onProperty  :drives; 
    owl:someValuesFrom :Vehicle]. 

 
As an example where the subrange is smaller than the range, consider the data model in Figure 5, 

shown in both ORM and UML notation. Here, CarDriver is a derived subtype, whose instances are 
restricted to those instances of Person who drive some vehicle that is a car. 
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Figure 5  Restricting CarDriver to Person instances that drive some Car in (a) ORM and (b) UML. 

 
Assuming the same object property declarations for the drives predicate, the subtype definitions may 

be captured in OWL as shown in Table 5. 
 

Table 5  Defining CarDriver in OWL as a restriction on the domain of the drives predicate 

Manchester Syntax Turtle Syntax 

Class: Car 
  SubclassOf: Vehicle 
Class: Driver 
  EquivalentTo: Person and 
                          drives some Car 

:Car  rdfs:subClassOf  :Vehicle. 
:Driver  owl:equivalentClass   
 [  a owl:Restriction; 
    owl:onProperty  :drives; 
    owl:someValuesFrom :Car]. 

 
 

Now consider Figure 6, which again depicts a binary relation R from a set A to a set B. In this case, 
each member of the subset C relates via R to some value in the subrange D only. Here we interpret “only” 
to include in C any domain element that relates via R to no element at all. So the only domain elements 
excluded from C are those that relate via R to some range element not in D. So C = {x | y(xRy  y  D)}. 

 
 
 
 
 
 
 

Figure 6  C is restricted to those A domain items that relate via R only to some value in the subrange D (if at all). 

 
As a simple example, consider the data model in Figure 7, shown in both ORM and UML notation. 

Here, CarOnlyDriver is a derived subtype, whose instances are restricted to those instances of Person who 
drive only vehicles that are cars. This subtype includes those people who drive no vehicles at all. 

 
 
 
 
 
 
 
 
 

 

Figure 7  Restricting CarOnlyDriver to Person instances that drive only cars (if at all) in (a) ORM and (b) UML. 
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In Manchester syntax, the set of all elements that relate via R to some value in a specified subrange D 
only (if at all) is expressed simply as “R only D”. In Turtle syntax, this is expressed as “[  owl:Restriction;  
owl:onProperty  :R;  owl:allValuesFrom  :D]. Assuming the previous declarations for the drives predicate 
and Car subclass, the subtype definition for CarOnlyDriver may be captured in OWL as shown in Table 6. 

 

Table 6  Defining CarOnlyDriver in OWL as a restriction on the domain of the drives predicate 

Manchester Syntax Turtle Syntax 

Class: CarOnlyDriver 
  EquivalentTo: Person and 

                 drives only Car 

:CarOnlyDriver  owl:equivalentClass 
[  a owl:Restriction; 
    owl:onProperty  :drives; 
    owl:allValuesFrom :Car]. 

 
  
Conclusion 
 
The current article discussed how to specify enumerated types in OWL, and how define a subclass by 
restricting its members to those domain elements of a predicate that relate to: (a) a specific value; (b) some 
value from a specified (sub)range; or (c) only values from a specified (sub)range. The next article will 
discuss some advanced features of OWL 2, such as property chains. 
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