
1

Ontological Modeling: Part 9

Terry Halpin
LogicBlox and INTI International University

This is the ninth in a series of articles on ontology-based approaches to modeling. The main focus is on
popular ontology languages proposed for the Semantic Web, such as the Resource Description Framework
(RDF), RDF Schema (RDFS), and the Web Ontology Language (OWL). OWL is based on description
logic. A later series of articles will explore other logic-based languages such as datalog. The first article [2]
introduced ontologies and the Semantic Web, and covered basic concepts in the Resource Description
Framework (RDF), contrasting them with other data modeling approaches. The second article [3] discussed
the N3 notation for RDF, and covered the basics of RDF Schema. The third article [4] provided further
coverage of RDFS, and introduced different flavors of the Web Ontology language (OWL). The fourth
article [5] discussed basic features of OWL, mainly using Manchester syntax. The fifth article [6] discussed
OWL taxonomy, comparison operators for classes, data types and predicates, and examined inverses,
functional roles and keys in more depth. The sixth article [7] covered cardinality restrictions in OWL 2.
The seventh article [8] discussed the union, intersection, and complement operators in OWL 2. The eighth
article [9] explored support for ring constraints within OWL 2. The current article discusses enumerated
types as well as value restrictions on properties in OWL 2.

Enumerated Types in OWL 2

Recall that in OWL, entities are identified by Internationalized Resource Identifiers (IRIs), and are grouped
into classes (e.g. Person, Book) to indicate their type(s). In contrast, literals (data values such as names or
numbers) are grouped into datatypes (e.g. xsd:string, xsd:nonNegativeInteger). An earlier article [8]
discussed how to define a new class or datatype by specifying its intension (i.e. meaning) in terms of
operations on classes or datatypes that are already declared. A type definition that specifies the necessary
and sufficient conditions for an item to be a member of the type is said to be an intensional definition of the
type. For example, Table 1 provides intensional definitions for StudentEmployee and PassGradeNr, in both
Manchester and Turtle syntax, assuming that the types referenced (Student, Employee, GradeNr,
FailGradeNr) have been previously declared.

Table 1 Defining new classes or datatypes by specifying their intension (meaning)

Manchester Syntax Turtle Syntax

Class: StudentEmployee
 EquivalentTo: Student and Employee

:StudentEmployee a owl:Class;
 owl:intersectionOf(:Student :Employee).

Datatype: PassGradeNr
 EquivalentTo: GradeNr and not FailGradeNr

:PassGradeNr a rdfs:Datatype;
 owl:intersectionOf(:GradeNr
 [owl:datatypeComplementOf :FailGradeNr]).

 The set of all possible instances of a type is said to be the extension of the type. If a class or data range
is composed of a known, finite set of items, it may be defined by enumerating (i.e. listing) those items. For
example, while EvenDigit could be defined intensionally as {x | x is a digit that is divisible by 2} it could
also be defined extensionally as a member of {0, 2, 4, 6, 8}. A type that is defined by enumerating its
extension is said to be an enumerated type, and its definition is said to be an extensional definition. In
Manchester syntax, the usual set notation is used to specify the extension, using braces as set delimiters and
commas as element separators. Turtle syntax instead uses parentheses as set delimiters, spaces as element
separators, and owl:oneOf for the set membership operator. Table 2 provides some examples in both
syntaxes.

2

Table 2 Defining finite classes or datatypes by specifying their extension (set of possible instances)

Manchester Syntax Turtle Syntax

Class: Weekday
 EquivalentTo: { Monday, Tuesday,
 Wednesday, Thursday, Friday }

:Weekday a owl:Class;
 owl:oneOf (:Monday :Tuesday
 :Wednesday :Thursday :Friday).

Datatype: EvenDigit
 EquivalentTo: {0, 2, 4, 6, 8}

:EvenDigit a rdfs:Datatype;
 owl:oneOf (0 2 4 6 8).

“Value” Restrictions on Predicates

In its treatment of “value restrictions”, OWL uses the term “value” loosely to mean either an individual
entity or a literal. Given this understanding, a named class or (unnamed) class expression may be defined as
the subject of a predicate whose range is restricted to include:

 some specific value
 some value from a specified class or data range
 only values from a specified class or data range

We consider these cases in turn. Figure 1 depicts a binary relation R from a set A to a set B, with

elements of the domain and range of the relation depicted as colored dots. Each member of the subset C
relates via R to at least the value v in B. So C = {x | xRv}. As shown in the depiction, it is possible that an
element of C relates not just to v but also some other element of B. However, each element of C must relate
at least to v.

Figure 1 C is restricted to those A domain items that relate via R to at least the value v in the range B.

 In Manchester syntax, the set of all elements that relate via R to the value v is expressed simply as “R
value v”. In Turtle syntax, this is expressed as “[owl:Restriction; owl:onProperty :R; owl:hasValue :v].
As a simple example, consider the data model in Figure 2, shown in the notations of both Object-Role
Modeling (ORM) [1] and the Unified Modeling Language (UML) [10]. Here, MalePerson is a derived
subtype, whose instances are restricted to those instances of Person that have male gender. The UML
subclass definitions are presented as informal notes.

Figure 2	 Restricting MalePerson to Person instances that have male gender in (a) ORM and (b) UML.

Treating Gender as an enumerated class of two individuals (male and female), these subtype

definitions may be captured in OWL as shown in Table 3. For simplicity, other aspects of the data model
are omitted in the OWL code (e.g. the mandatory, functional nature of the hasGender predicate).

3

Table 3 Defining MalePerson in OWL as a restriction on the domain of the hasGender predicate

Manchester Syntax Turtle Syntax

Class: Gender
 EquivalentTo: { male, female }
Class: MalePerson
 EquivalentTo: Person and
 hasGender value male

:Gender a owl:Class;
 owl:oneOf (:male :female).
:MalePerson owl:intersection (:Person
 [a owl:Restriction;
 owl:onProperty :hasGender;
 owl:hasValue :male]).

Now consider Figure 3, which depicts a binary relation R from a set A to a set B. In this case, each

member of the subset C relates via R to some value in D, a subset of B. So C = {x | y(y  D & xRy)}.

Figure 3 C is restricted to those A domain items that relate via R to some value in the subrange D.

In Manchester syntax, the set of all elements that relate via R to some value in a specified subrange D

is expressed simply as “R some D”. In Turtle syntax, this is expressed as “[owl:Restriction;
owl:onProperty :R; owl:someValuesFrom :D]. As a simple example, consider the subtyping data model
in Figure 4, shown in both ORM and UML notation. Here, Driver is a derived subtype, whose instances are
restricted to those instances of Person who drive some vehicle.

Figure 4 Restricting Driver to Person instances that drive some Vehicle in (a) ORM and (b) UML.

These subtype definitions may be captured in OWL as shown in Table 4. In this case, the subrange

Vehicle is the same as the range.

Table 4 Defining Driver in OWL as a restriction on the domain of the drives predicate

Manchester Syntax Turtle Syntax

ObjectProperty: drives
 Domain: Person
 Range: Vehicle
Class: Driver
 EquivalentTo: Person and
 drives some Vehicle

:drives rdfs:domain :Person.
:drives rdfs:range :Vehicle.
:Driver owl:equivalentClass
 [a owl:Restriction;
 owl:onProperty :drives;
 owl:someValuesFrom :Vehicle].

As an example where the subrange is smaller than the range, consider the data model in Figure 5,

shown in both ORM and UML notation. Here, CarDriver is a derived subtype, whose instances are
restricted to those instances of Person who drive some vehicle that is a car.

4

Person
drives

Vehicle

CarDriver*

*Each CarDriver is a Person
who drives some Car.

(a) (b)

CarDriver

Person Vehicle**

Car
Car

CarDriver = Person
where person.vehicle includes some car

Figure 5 Restricting CarDriver to Person instances that drive some Car in (a) ORM and (b) UML.

Assuming the same object property declarations for the drives predicate, the subtype definitions may

be captured in OWL as shown in Table 5.

Table 5 Defining CarDriver in OWL as a restriction on the domain of the drives predicate

Manchester Syntax Turtle Syntax

Class: Car
 SubclassOf: Vehicle
Class: Driver
 EquivalentTo: Person and
 drives some Car

:Car rdfs:subClassOf :Vehicle.
:Driver owl:equivalentClass
 [a owl:Restriction;
 owl:onProperty :drives;
 owl:someValuesFrom :Car].

Now consider Figure 6, which again depicts a binary relation R from a set A to a set B. In this case,
each member of the subset C relates via R to some value in the subrange D only. Here we interpret “only”
to include in C any domain element that relates via R to no element at all. So the only domain elements
excluded from C are those that relate via R to some range element not in D. So C = {x | y(xRy  y  D)}.

Figure 6 C is restricted to those A domain items that relate via R only to some value in the subrange D (if at all).

As a simple example, consider the data model in Figure 7, shown in both ORM and UML notation.

Here, CarOnlyDriver is a derived subtype, whose instances are restricted to those instances of Person who
drive only vehicles that are cars. This subtype includes those people who drive no vehicles at all.

Figure 7 Restricting CarOnlyDriver to Person instances that drive only cars (if at all) in (a) ORM and (b) UML.

5

In Manchester syntax, the set of all elements that relate via R to some value in a specified subrange D
only (if at all) is expressed simply as “R only D”. In Turtle syntax, this is expressed as “[owl:Restriction;
owl:onProperty :R; owl:allValuesFrom :D]. Assuming the previous declarations for the drives predicate
and Car subclass, the subtype definition for CarOnlyDriver may be captured in OWL as shown in Table 6.

Table 6 Defining CarOnlyDriver in OWL as a restriction on the domain of the drives predicate

Manchester Syntax Turtle Syntax

Class: CarOnlyDriver
 EquivalentTo: Person and

 drives only Car

:CarOnlyDriver owl:equivalentClass
[a owl:Restriction;
 owl:onProperty :drives;
 owl:allValuesFrom :Car].

Conclusion

The current article discussed how to specify enumerated types in OWL, and how define a subclass by
restricting its members to those domain elements of a predicate that relate to: (a) a specific value; (b) some
value from a specified (sub)range; or (c) only values from a specified (sub)range. The next article will
discuss some advanced features of OWL 2, such as property chains.

References

1. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, 2nd edition, Morgan
Kaufmann, San Francisco.

2. Halpin, T. 2009, ‘Ontological Modeling: Part 1’, Business Rules Journal, Vol. 10, No. 9 (Sep. 2009),
URL: http://www.BRCommunity.com/a2009/b496.html.

3. Halpin, T. 2009, ‘Ontological Modeling: Part 2’, Business Rules Journal, Vol. 10, No. 12 (Dec. 2009),
URL: http://www.BRCommunity.com/a2009/b513.html.

4. Halpin, T. 2010, ‘Ontological Modeling: Part 3’, Business Rules Journal, Vol. 11, No. 3 (March 2010),
URL: http://www.BRCommunity.com/a2010/b527.html.

5. Halpin, T. 2010, ‘Ontological Modeling: Part 4’, Business Rules Journal, Vol. 11, No. 6 (June 2010),
URL: http://www.BRCommunity.com/a2010/b539.html.

6. Halpin, T. 2010, ‘Ontological Modeling: Part 5’, Business Rules Journal, Vol. 11, No. 12 (Dec. 2010),
URL: http://www.BRCommunity.com/a2010/b570.html.

7. Halpin, T. 2011, ‘Ontological Modeling: Part 6’, Business Rules Journal, Vol. 12, No. 2 (Feb., 2011),
URL: http://www.BRCommunity.com/a2011/b579.html.

8. Halpin, T. 2011, ‘Ontological Modeling: Part 7’, Business Rules Journal, Vol. 12, No. 6 (Jun., 2011),
URL: http://www.BRCommunity.com/a2011/b602.html.

9. Halpin, T. 2011, ‘Ontological Modeling: Part 8’, Business Rules Journal, Vol. 12, No. 9 (Sep., 2011),
URL: http://www.BRCommunity.com/a2011/b614.html.

10. Object Management Group 2003, UML 2.0 Superstructure Specification. Available online at:
www.omg.org/uml.

11. Object Management Group 2005, UML OCL 2.0 Specification. Available online at:
http://www.omg.org/docs/ptc/05-06-06.pdf.

12. W3C 2009, ‘OWL 2 Web Ontology Language: Primer’, URL: http://www.w3.org/TR/owl2-primer/.
13. W3C 2009, ‘OWL 2 Web Ontology Language: Direct Semantics’, URL: http://www.w3.org/TR/owl2-

direct-semantics/.
14. W3C 2009, ‘OWL 2 Web Ontology Language Manchester Syntax’, URL:

http://www.w3.org/TR/owl2-manchester-syntax/.
15. W3C 2009, ‘OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax’,

URL: http://www.w3.org/TR/owl2-syntax/.

