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This is the fourteenth article in a series on logic-based approaches to data modeling. The first article [5] 

briefly overviewed deductive databases, showing how simple data models with asserted and derived facts 

may be declared and queried in LogiQL [2, 21, 23], a leading edge deductive database language based on 

extended datalog [1]. The second article [6] discussed how to declare inverse predicates, simple mandatory 

role constraints and internal uniqueness constraints on binary fact types. The third article [7] explained how 

to declare n-ary predicates and apply simple mandatory role constraints and internal uniqueness constraints 

to them. The fourth article [8] discussed external uniqueness constraints. The fifth article [9] covered 

derivation rules in some more detail, and inclusive-or constraints. The sixth article [10] discussed simple set-

comparison constraints (i.e. subset, exclusion, and equality constraints), and exclusive-or constraints. The 

seventh article [11] covered subset constraints between compound role sequences, including cases involving 

join paths. The eighth article [12] discussed exclusion and equality constraints between compound role 

sequences. The ninth article [13] explained how to declare basic subtyping. The tenth article [14] discussed 

how to declare relationships to be irreflexive (using a ring constraint) and/or symmetric (using a ring 

constraint or a derivation rule). The eleventh article [15] showed how to constrain a relationship to be 

asymmetric and/or intransitive. The twelfth article [16] discussed recursive derivation rules, and how to 

constrain ring relationships to be acyclic and/or strongly intransitive. The thirteenth article [17] showed how 

to declare internal and external frequency constraints. The current article discusses how to declare object and 

role cardinality constraints, as well as value-comparison constraints. The LogiQL code examples are 

implemented using the free cloud-based REPL (Read-Eval-Print-Loop) tool for LogiQL accessible at 

https://developer.logicblox.com/playground/. 

 

 

Object Cardinality Constraints and Role Cardinality Constraints 

 

In mathematics, the cardinality of a set is the number of (distinct) elements that belong to the set. For 

example, using “#” for the cardinality function and braces “{”, “}” for set delimiters, #{2, 4, 6} = 3 and #{ } 

= 0. Object-Role Modeling (ORM) [18, 19, 20] uses the term “cardinality” in the same sense, where the set 

is either a population of an object type or a population of a fact role. This is very different from what the term 

“cardinality constraint” means in Entity Relationship (ER) modeling [3], or what the term “multiplicity 

constraint” means in the Unified Modeling Language (UML) [24]. As neither ER nor UML support a 

graphical notation for object and role cardinality constraints we shall ignore them for the rest of this section. 

Figure 1(a) shows a populated ORM model that records the name of the current president of the United 

States. The object type US_President is depicted as a named, soft rectangle, with its reference mode “.Name” 

shown in parenthesis, indicating that US presidents are primarily identified by their name. The “# ≤ 1” 

notation next to the object type shape depicts an object cardinality constraint to ensure that the cardinality 

(number of members) of the population of US_President is less than or equal to one (i.e. 0 or 1) for each state 

of the database. The NORMA tool [4] for ORM verbalizes this constraint as “Each population of US_President 

contains at most 1 instances.”. 

 

 

 

 

 

 

 

 

Figure 1 An ORM model with (a) an object cardinality constraint, and (b) a role cardinality constraint. 
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Figure 1(b) shows a populated ORM model that records the names of some current politicians of the 

United States, using a unary fact type “US_Politician is president” to indicate who is the president. Here the “# ≤ 

1” notation next to the single role shape in this fact type depicts a role cardinality constraint to ensure that 

the cardinality of the population of this presidential role is at most one for each state of the database. The 

NORMA tool for ORM verbalizes this constraint as “For each population of “US_Politician is president”, the number of 

US_Politician instances is at most 1.”. 

The ORM schema in Figure 1(a) may be coded in LogiQL as shown below. The first line of code 

declares the entity type US_President, and types its refmode predicate which injectively maps instances of 

US_President to president name instances stored as character strings. The right-arrow “->” is read as 

“implies”. A derivation rule then uses the aggregate count function to derive the number of US presidents. 

The left-arrow “<-“ is read as “if”. If no US presidents are currently recorded, you might expect this count 

function to return 0. However, the LogiQL count function returns no value at all if it doesn’t find any facts 

satisfying the condition. To ensure that 0 is returned for such empty set cases, we assign 0 as the default value 

for the count function. This is coded as shown, using the lang:defaultValue metapredicate followed by square 

brackets that enclose the grave accent character “`” followed by function name. Finally, the object cardinality 

constraint is declared.  
 

US_President(p), hasUS_PresidentName(p:pn)  ->  string(pn). 
// The number of US presidents is the count of all the facts where something is a US president 
nrUS_Presidents[] = n  <- 

agg<<n = count()>>US_President(_). 
// The default value of the nrUS_Presidents function is 0. 
lang:defaultValue[`nrUS_Presidents] = 0. 
// For each state of the database, there is at most one US president 
nrUS_Presidents[] = n  ->  n <= 1. 

 

To enter the schema in the free, cloud-based REPL tool, use a supported browser to access the website 

https://repl.logicblox.com. The latest version of the REPL tool appears to require you to explicitly create a 

workspace before adding code blocks to it. To do this, simply enter the following code, and wait for 

confirmation that the workspace is created: 
 

create --unique 
 

Schema code is entered in one or more blocks of one or more lines of code, using the addblock command 

to enter each block. After the “/>” prompt, type the letter “a”, and click the addblock option that then appears. 

This causes the addblock command (followed by a space) to be added to the code window. Typing a single 

quote after the addblock command causes a pair of single quotes to be appended, with your cursor placed 

inside those quotes ready for your block of code. 

Now copy the full schema code provided above to the clipboard (e.g. using Ctrl+C), then paste it 

between the quotes (e.g. using Ctrl+V), and then press the Enter key. You are now notified that the block 

was successfully added, and a new prompt awaits your next command (see Figure 2). By default, the REPL 

tool also appends an automatically generated identifier for the code block. Alternatively, you can enter each 

line of code directly, using a separate addblock command for each line. 

  

https://repl.logicblox.com/
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Figure 2 Creating a workspace and then adding a block of schema code. 

The data in Figure 1(a) may be entered in LogiQL using the following delta rule. A delta rule of the 

form +fact inserts that fact. Recall that plain, double quotes (i.e. ",") are needed here, not single quotes or 

smart double quotes. Hence, it’s best to use a basic text editor such as WordPad or NotePad to enter code 

that will later be copied into a LogiQL tool. 
 

+US_President(p1), +hasUS_PresidentName(p1:"Donald Trump"). 
 

 Delta rules to add or modify data are entered using the exec (for ‘execute’) command. To invoke the 

exec command in the REPL tool, type “e” and then select exec from the drop-down list. A space character is 

automatically appended. Typing a single quote after the exec command and space causes a pair of single 

quotes to be appended, with your cursor placed inside those quotes ready for your delta rules. Now copy the 

lines of data code provided above to the clipboard (e.g. using Ctrl+C), then paste it between the quotes (e.g. 

using Ctrl+V), and then press the Enter key. A new prompt awaits your next command (see Figure 3). 

 

 
 

Figure 3  Adding the data. 

 

Now that the data model is stored, you can use the print command to inspect the contents of any 

predicate. For example, to list the names of the US presidents, type “p” then select print from the drop-down 

list, then type a space followed by “U”, then select US_President from the drop-down list and press Enter. 

Because US_President is an entity type, an internal id is returned as well as the president’s name. Similarly, 

you can use “n” to select and print the value of the nrUS_Presidents function. 

 

 

 

 

 

 

 

 

Figure 4 Printing the entries for US_President and nrUS_Presidents. 

To check that the object cardinality constraint is actually enforced, try to execute the following delta 

rule, to assert a second US president for the same database state: 

 

+US_President(p2), +hasUS_PresidentName(p2:"Joe Biden"). 
 



4 

This attempted update generates an error message as it violates the object cardinality constraint by 

asserting that the number of US presidents is 2. Figure 5 displays part of the error message. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 An error message is generated if an attempted update violates a constraint. 

The ORM schema in Figure 1(b) may be coded in a similar way, as shown below. 

 

US_Politician(p), hasUS_PoliticianName(p:pn)  ->  string(pn). 
isPresident(p)  ->  US_Politician(p). 
// The number of US presidents is the count of all the facts where a US politician is president 
nrUS_Presidents[] = n  <- 

agg<<n = count()>>isPresident(_). 
// The default value of the nrUS_Presidents function is 0. 
lang:defaultValue[`nrUS_Presidents] = 0. 
// For each state of the database, there is at most one US president 
nrUS_Presidents[] = n  ->  n <= 1. 
 

The data in Figure 1(b) may be entered in LogiQL using the following delta rules. 

 

+US_Politician(p1), +hasUS_PoliticianName(p1:"Donald Trump"), +isPresident(p1). 
+US_Politician(p2), +hasUS_PoliticianName(p2:"Joe Biden"). 
+US_Politician(p3), +hasUS_PoliticianName(p3:"Nancy Pelosi"). 
 
To perform a query, you specify a derivation rule to compute the facts requested by the query. For 

example, if you enter the above schema and data for Figure 1(b), the following query may be used to list the 

name of each recorded US politician who is not the president. The rule’s head uses an anonymous predicate 

to capture the result derived from the rule’s body. The head variable pn is implicitly universally quantified. 

The variable p introduced in the body is implicitly existentially quantified. A comma “,” denotes the logical 

conjunction operator (and), and an exclamation mark “!” denotes the logical negation operator (not). 
 

_(pn)  <-  hasUS_PoliticianName(p:pn), !isPresident(p). 
 

In LogiQL, queries are executed by appending their code in single quotes to the query command. To do 

this in the REPL tool, type “q”, choose “query” from the drop-down list, type a single quote, then copy and 

paste the above LogiQL query code between the quotes and press Enter. Figure 6. displays a screenshot after 

entering the schema and data and issuing the sample query. For the small population entered, the query returns 

just two US politicians who are not the president. 
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Figure 6 Adding the model and a query to list the name of each recorded US politician who is not the president.  

 Although useful, object and role cardinality constraints tend to be declared only rarely in ORM, as they 

are often implied by other existing value constraints or frequency constraints. For example, an {‘M’, ‘F’} 

value constraint on Gender(.Code) implies the object cardinality constraint “# ≤ 2” on Gender. For further 

examples, see p. 289 of [20]. 

 

 

Value-Comparison Constraints 
 

Table 1 Some details about famous scientists 

Scientist BirthYear DeathYear 

Albert Einstein 

Jane Goodall 

Marie Curie 

Michio Kaku 

Stephen Hawking 

… 

1879 

1934 

1867 

1947 

1942 

… 

1955 

-- 

1934 

-- 

2018 

… 

 
Table 1 lists the names of some famous scientists, as well as their birth year. Those who are not currently 

alive also have their death year recorded. Here, scientists are identified simply by their name, and years are 

identified by their CE (Common Era) year number. A double hyphen “--” is used to indicate that the scientist 

has not yet died. 

Figure 7(a) shows an ORM schema for this example, as well fact tables populating the fact types “Scientist 

was born on Date” and “Scientist died on Date” with the sample data. Names of the roles hosted by Year are 

displayed in blue in square brackets besides the role boxes. The mandatory role constraint and the uniqueness 

constraints ensure that each scientist was born in exactly one year and died in at most one year.  

The circled “>” with an arrow directed from the deathYear role to the birthyear role depicts a value-

comparison constraint. In ORM, a value-comparison constraint may be used to compare one value with 

another using one of the following six comparison operators: <, ≤, >, ≥, =, ≠. The two dots on the left and 

right of the enclosing circle indicate that two instances are being compared rather than two sets. In this 

example, the “>” comparator is used. The NORMA tool verbalizes this value-comparison constraint as 

follows: “For each Scientist, if that Scientist died in some Year1 and was born in some Year2 then Year1 is greater than Year2. 

Neither ER nor UML support a graphic notation for value-comparison constraints, so will be ignored for the 

rest of this section. 

elementid:d65bb110-a530-4b2d-811f-423279128e63
elementid:d65bb110-a530-4b2d-811f-423279128e63
elementid:59855ed7-ce79-4d96-8a8b-25d67a845205
elementid:a29a8dc7-d99e-432e-b889-dfa38ba80c45
elementid:13bd4784-baab-4053-9fa3-e64da9ecdfd3
elementid:a29a8dc7-d99e-432e-b889-dfa38ba80c45
elementid:a29a8dc7-d99e-432e-b889-dfa38ba80c45
elementid:a29a8dc7-d99e-432e-b889-dfa38ba80c45


6 

Scientist
(.Name)

Year
(CE:)

was born in

died in

>

[birthYear]

[deathYear]

Stephen Hawking

Michio Kaku

Mare Curie

Jane Goodall

Albert Einstein

1942

1947

1867

1934

1879

Stephen Hawking

Marie Curie

Albert Einstein

2018

1934

1955

(a) (b) 
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Figure 7 (a) A populated ORM model for Table 1, and (b) a simplified relational database schema for the example. 

 

Figure 7(b) shows the relational database schema diagram generated by the NORMA tool for this 

example. The primary key is marked “PK”, and non-null attributes are displayed in bold. The value-

comparison constraint is not depicted in this relational view, but when mapped to SQL, the value-comparison 

constraint may be enforced by the simple check clause check(deathYear > birthyear) on the Scientist table. Since 

SQL check clauses are violated only when they evaluate to False, the constraint is correctly enforced even 

when the deathYear entry is a null value. 

The ORM schema in Figure 7(a) may be coded in LogiQL as follows. You can store year values using 

one of LogiQL’s datetime datatypes (see the link to the Core Reference manual in the conclusion), but for 

simplicity let’s just store the year numbers as integers. 
 

Scientist(s), hasScientistName(s:sn)  ->  string(sn). 
birthYearOf[s] = yr  ->  Scientist(s), int(yr). 
deathYearOf[s] = yr  ->  Scientist(s), int(yr). 
// Each scientist was born in some year 
Scientist(s)  ->  birthYearOf[s] = _. 
// For each scientist with a birth year and a death year, deathYear > birthYear  
birthYearOf[s] = _, deathYearOf[s] = _  ->  deathYearOf[s] > birthYearOf[s]. 

 

 The data may be entered in LogiQL using the following delta rules: 
 

+Scientist(s1), +hasScientistName(s1:"Albert Einstein"), + birthYearOf[s1]=1879, + 
deathYearOf[s1]=1955. 
+Scientist(s2), +hasScientistName(s2:"Jane Goodall"), + birthYearOf[s2]=1934. 
+Scientist(s3), +hasScientistName(s3:"Marie Curie"), + birthYearOf[s3]=1867, + 
deathYearOf[s3]=1934. 
+Scientist(s4), +hasScientistName(s4:"Michio Kakul"), + birthYearOf[s4]=1947. 
+Scientist(s5), +hasScientistName(s5:"Stephen Hawking"), + birthYearOf[s5]=1942, + 
deathYearOf[s5]=2018. 

 

If you enter the above schema and data, and then execute the following query to list the name and birth 

year of those scientists born in a year when some scientist died, you will get result shown in Figure 8. 
 

_(sn, by)  <-  hasScientistName(s:sn), birthYearOf[s] = by, deathYearOf[_] = by. 
 

 

 

 

 

Figure 8 A query to list the name and birth year of each scientist who was born in a year some scientist died. 
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Conclusion 
 

The current article discussed how to declare object cardinality constraints, role cardinality constraints, and 

value-comparison constraints in ORM and LogiQL. The core reference manual for LogiQL is accessible at 

https://developer.logicblox.com/content/docs4/core-reference/. An introductory tutorial for LogiQL and the 

REPL tool is available at https://developer.logicblox.com/content/docs4/tutorial/repl/section/split.html. 

Further coverage of LogiQL may be found in [21]. 
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