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Abstract: Many application domains involve constraints that, at a conceptual modeling level, apply to 
one or more schema paths, each of which involves one or more conceptual joins (where the same 
conceptual object plays roles in two relationships). Popular information modeling approaches typically 
provide only weak support for such join constraints. This paper contrasts how join constraints are 
catered for in Object-Role Modeling (ORM), the Unified Modeling Language (UML), the Object-
oriented Systems Model (OSM), and some popular versions of Entity-Relationship modeling (ER). 
Three main problems for rich support for join constraints are identified: disambiguation of schema 
paths; disambiguation of join types; and mapping of join constraints. To address these problems, some 
notational, metamodel, and mapping extensions are proposed.  

 
 
 

1 INTRODUCTION 
 
At the analysis phase of information system development, a conceptual schema may be used to describe the 
structure of the application domain in way that is easily understood and validated by the domain expert. 
Once validated, the conceptual schema can then be mapped to logical/physical/external schemas using 
automated and/or manual processes. For industrial database applications, the high level data modeling is 
typically performed using a version of Entity Relationship (ER) modeling [6], such as Information 
Engineering (IE) [9], Barker ER [1], or Integration Definition 1 extended (IDEF1X) [18]. Recently, Object-
Role Modeling (ORM) [10] and Unified Modeling Language (UML) [19] class diagrams have gained some 
industrial adoption for information modeling. In addition, modeling techniques from academia, such as 
Object-oriented Systems Model (OSM) [7, 8], can be used to construct information models. 
 With increasing competition in the marketplace, and the potential costs of bad data, there has been a 
growing appreciation of the central role that business rules play in enforcing data integrity. Since such rules 
need to be validated with domain experts who may have little knowledge of implementation structures, it is 
best to capture them first in a conceptual schema where they can be readily communicated. In practice, 
many application domains involve business rules that are essentially constraints over one or more schema 
paths, each of which involves one or more conceptual joins (where the same conceptual object plays a role 
in two relationships). Although join constraints often apply to an application domain, they are not always 
included in the data model for the domain, partly because popular modeling approaches typically provide 
only weak support for such constraints. This makes it harder for the modeler to detect the rules and decide 
whether to include them in the application. It also makes it harder for the developer who must now code the 
rules instead of benefiting from automated code generation from a high-level rule specification.  

This paper discusses current support for join constraints in the approaches listed earlier, and suggests 
ways to improve the support. Three main problems for rich support for join constraints are identified: 
disambiguation of schema paths; disambiguation of join types; and mapping of join constraints. To address 
these problems, some notational, metamodel, and mapping extensions are proposed. 

Section 2 deals with uniqueness and frequency constraints on a single join path. Section 3 examines 
set comparison constraints that apply to one or more join paths. Section 4 briefly outlines how join 
constraints may be catered for by extensions to metamodels and mapping procedures. Section 5 
summarizes the main results, and lists references for further reading. 

Because of its inherent simplicity and richness, the ORM notation is used for much of the discussion, 
but the main results have applicability to the other notations. ORM concepts used are briefly defined in this 
paper as needed. An overview of ORM is given in [10], and a detailed treatment in [12]. 
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2 CONSTRAINTS OVER A SINGLE JOIN PATH 
 
Before discussing constraints on join paths, the notions of internal uniqueness constraint and conceptual 
join are explained, using a simple example adapted from [12]. Figure 1(a) shows an ORM schema diagram 
with two base associations (Employee drives Car; Car was imported from Country) and a derived, association 
(Employee drives Car imported from Country). In ORM, object types are denoted by named ellipses. Simple 
identification schemes may be abbreviated in parentheses. For example, Employee(empNr) abbreviates the 
injective (1:1-into) association Employee has EmpNr. Each association is shown as a named sequence of one or 
more role-boxes. A role in ORM is a part played in an association, where the associations may be unary 
(one role), binary (two roles), ternary (three roles), or longer. The association is the only data structure in 
ORM, so associations are always used instead of attributes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The ternary association is derived from a conceptual inner join of the binary associations 

 The asterisk on the ternary association indicates that it is derived. The derivation rule indicates how it 
is derived, and is formally expressed in an ORM conceptual query language known as ConQuer [2]. Here 
the word “that” is used to perform a conceptual join, indicating that the car driven by the employee must be 
the same car that is imported from a country. In essence, the derived association is an abbreviation for the 
schema path that starts at Employee and goes through the drives predicate to Car, and then through the 
import predicate to Country. As we pass through the Employee object type on this path, we demand that the 
car playing the role of being driven must be the same car that plays the role of being imported. This entails 
a conceptual join between the two roles played by Car (shown shaded in the figure). The instance diagram 
in Figure 1(b) shows another way to picture this. This is sometimes called an object join, since the same 
object must play both roles. 
 In ORM, associations not used for primary reference are often called fact types. Each fact type may be 
populated by a fact table (set of fact instances), whose columns correspond to the roles. Figure 1(a) includes 
a sample population for the two base fact types, and the resulting population derived for the ternary fact 
type. Here employee 15 drives two cars, one of which (the car with registration number PKJ123) is 
imported (from Italy). Since car ABC000 is not imported, it is excluded from the result. If you think of the 
fact tables as relational tables, then it should be clear than the join here is an inner join.  

In contrast, a conceptual left outer join from the drives “table” to the import “table” would include the 
additional tuple (15, ABC000, ?) in the result, where “?” denotes a null value. In ConQuer, left outer joins 
may be specified by inserting the modal possibility operator “possibly” immediately after “that” in the path 
expression.  
 The arrow tipped-bars spanning one or more roles in the predicates are internal uniqueness constraints. 
If a role has a uniqueness constraint applying just to it, then entries in its fact column must be unique. For 
example, the entry PKJ123 may appear only once in the car column of the import fact table. If the 
uniqueness constraint spans multiple roles, the combination of entries in the associated fact columns must 
be unique.  For example, the combination (15, PKJ123) may appear only once in the drives fact table. The 
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spanning uniqueness constraint on the drives fact type simply indicates that it is many-to-many, and can be 
populated only by sets of facts, not bags of facts. 
 With these concepts understood, we are ready to address external uniqueness constraints and their 
associated joins. We begin with a simple case where the join path and join type is unambiguous. Figure 2(a) 
is an ORM diagram with two associations: Room is in Building; Room has RoomNr. A building is identified by its 
building number. RoomNr identifies itself, so is a value type (shown as a broken ellipse) rather than an 
entity type. The large black dots on Room are simple mandatory role constraints, to indicate that the roles 
attached are mandatory for Room (each room must be in a building, and must have a room number). The 
combination of mandatory and internal uniqueness constraints allows ORM to model cardinality and 
multiplicity constraints used by other notations, in a way that scales properly to n-ary associations. For a 
discussion of why other notations such as UML fail to scale properly, see [11, 13].  

 The circled “u” is an external uniqueness constraint spanning roles played by Building and RoomNr, 
to indicate that each building, room number combination refers to at most one room. Roles in the same 
predicate are co-roles of one another. The semantics of an external uniqueness constraint may be 
determined by finding a schema path between the co-roles of the constrained roles, performing conceptual 
joins on the intermediate object types, bag-projecting on the constrained roles in the derived association 
formed from this path, and then asserting that an internal uniqueness constraint applies to this projection. 
Hence the constraint requires that the bag-projection must yield the same result here as set-projection. In 
this example, there is exactly one schema path and the conceptual join occurs between the roles played by 
Room (these roles are shaded in the figure).  
Figure 2(b) shows how to model this situation in Barker ER notation. Here the “#” on “room nr” indicates it 
is part of the primary identifier for Room, and the stroke “|” on the left role of the Room in Building association 
indicates that the relationship is also part of the primary identifier for Room. Unlike ORM, the Barker ER 
notation cannot express external uniqueness constraints outside primary identification schemes. For 
example, if we added a global roomId attribute as the primary identifier of Room, we could no longer assert 
the external uniqueness constraint in Barker ER. 
 Figure 2(c) depicts the example in IE notation. There is no graphic notation for external uniqueness in 
IE, so the constraint needs to be captured informally elsewhere (e.g. in a note). Figure 2(d) models the case 
using IDEF1x. Unfortunately, the external uniqueness constraint can only be modeled by migrating 
building number over to the primary key of Room, and declaring it to be a foreign key to Building. This is 
just a syntactic variant of relational notation, so cannot be regarded as conceptual. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Depicting external uniqueness in various modeling notations 
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 Figure 2(e) shows one way to model this situation in UML. In the current UML 1.4 specification [19], 
there is no graphic notation for external uniqueness in the general ORM sense, so the constraint has been 
expressed informally as a note attached to the relevant model elements. UML does not even include a 
graphic notation for unique attributes, so I have added a non-standard {P} notation to indicate that bldgNr 
is the primary conceptual means of identifying buildings. UML does provide partial support for external 
uniqueness by allowing association ends to be qualified, as shown in Figure 2(f). Here an employee may be 
associated with a room in a building by qualifying Building by roomNr. This effectively partitions building 
into rooms based on room number. Unfortunately, this technique is of little use if we wish to treat Room as 
a class itself, as would be normal practice. 
 Figure 2(g) portrays the example in OSM. Like ORM, OSM adopts an attribute-free approach for data 
modeling. In ORM, the notation Building(nr) is just an abbreviation for the injective association Building has 
BuildingNr, so the parallel between OSM and ORM should be obvious. OSM does not have a graphic notation 
for external uniqueness, but it does support it formally by allowing the diagram to be annotated with a 
functional dependency expression that captures the constraint, as shown. In OSM this is called a “co-
occurrence” constraint.  

Like ORM, OSM allows declaration of derived fact types that are formally defined in terms of existing 
fact types as well as operations such as joins. In OSM these are called “high-level relationship sets” ([7] 
section 4.1.6; [8] section 4.3). While this feature could be used to emulate a number of ORM’s graphic 
capabilities, it does so at the expense of requiring multiple diagrams (one for defining the abstraction, and 
another for using it), and may still require additional textual annotations to capture semantics that ORM 
portrays graphically on a single diagram. 

In OSM, the meaning of its arrow symbol “ ” is context-dependent. When attached to associations, it 
shows the direction in which to read the association name (similar to UML’s “4”). When used in co-
occurrence constraints, it means “functionally determines”. This semantic overload can be confusing for 
users unfamiliar with the notation, and could be avoided by using different symbols for the different senses. 
 In the above example, the two roles participating in the conceptual join are both mandatory for the join 
object type (Room). This ensures that the conceptual join is an inner join. However, if one or more roles 
involved in the conceptual join are optional, the meaning of the external uniqueness constraint may be 
ambiguous. As a simple example, consider the two ORM models shown in Figure 3.  

In Figure 3(a), each course must have a title, but may or may not be offered by a department (e.g. it 
could be a department course, a general course, or a course offered by a visiting lecturer). The external 
uniqueness constraint indicates that if a course is offered by a department, then the combination of the 
department and course title is unique. In other words, within a given department each course has a different 
title. But if two courses are not offered by a department, must they have different titles? There are two 
reasonable answers to this question: Yes, or No. In principle, we could respond Unknown, but in practice 
this is not an option because we require the semantics to be well defined (in the rare case where there is no 
domain expert to provide a definite answer, we make a choice ourselves). At any rate, the constraint is 
ambiguous unless we agree to always answer such a question in the same way. 
 
 
 
 
 
 
 
 
 

Figure 3 External uniqueness constraints involving optional roles may be ambiguous 

 
If we answer Yes to the question, then the same title may apply to at most one course with no 

department. The same title may however apply to many courses in different departments. In terms of the 
underlying join path for the constraint, this interpretation applies conceptual outer joins to optional roles, 
with the added proviso that null values are treated as ordinary values. The join of the title and department 
fact types results in a compound ternary fact type equivalent to the relational table scheme in Figure 4.  
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  Course( courseCode, courseTitle, [departmentCode] ) 
 

        C1   Mechanics  PY 
        C2   Mechanics  MA 
        C3   Mechanics  ? 
        C4   Mechanics  ?   -- violates constraint  
 

Figure 4 Outer join semantics for the external uniqueness constraint in Figure 3(a) 

This relational notation underlines uniqueness constraints; if more than one exists, the primary key is 
doubly-underlined. Optional columns are marked with square brackets. The external uniqueness constraint 
in Figure 3(a) appears as the internal uniqueness constraint spanning courseTitle and departmentCode.  

The sample population shows three courses C1, C2, C3 with the same title, one offered by the physics 
department, one by the mathematics department, and one offered by no department. The fourth row (C4, 
Mechanics, ?) is rejected because in the presence of row 3 it violates the constraint that courses with no 
department must have different titles. For the purpose of comparison, the null values of rows 3 and 4 are 
treated like ordinary values, and thus are equated. 

Many years ago, we introduced this outer join semantics for external uniqueness constraints to model 
disjunctive reference schemes at the conceptual level, and discussed various ways to implement these 
constraints in a relational database system [15]. To simplify the discussion above, each course is primarily 
identified by a course code (e.g. ‘C1’), but this is not essential, since the semantics may apply even if the 
disjunctive reference scheme is the only means of identifying courses. Independently of our work, 
Thalheim provided an alternative formalization of primary keys with optional attributes [23]. The outer join 
interpretation is reasonable for the course example, and is absolutely required in many practical situations. 
For a practical case study of disjunctive reference in botanical naming systems, see [16, 20] for a simplified 
treatment and [21] for the full treatment. 
 Now consider the ORM model in Figure 3(b), which is a fragment of an ORM metamodel. Since 
ORM requires each predicate to have at least one reading, it is optional whether roles are given names. In 
the figure, the role played by RoleName is given the name “name” (depicted here in square brackets), but 
the other roles are not named. The external uniqueness constraint indicates that rolenames are unique 
within a given predicate. However, many roles within the same predicate may have no name. Unlike the 
course example, this situation requires an inner join interpretation for the join path underlying the external 
uniqueness constraint. Let us identify the predicate of the association Role is in Predicate as P1, and its left and 
right roles as r1, r2 respectively. Let us also identify the predicate of the association Role has RoleName as P2, 
and its left and right roles as r3, r4 respectively.  

The join of the two fact types results in a compound ternary fact type equivalent to the relational table 
scheme in Figure 5. The external uniqueness constraint appears as the internal uniqueness constraint in 
Figure 5(a). Since we only require roles to have unique names in a predicate if they are named, the 
conceptual join between the roles of Role in Figure 3(b) is an inner join, resulting in the single row 
population shown. For comparison, the outer join result is shown in Figure 5(b). If we were to take the 
outer join interpretation as we did for the course model, the first two rows would violate the compound 
uniqueness constraint. 
 

(a) (b) 
 

Role( roleId, predicateId, [roleName] )  Role( roleId, predicateId, [roleName] ) 
 

       r4       P2   name         r1      P1  ? 
                 r2      P1  ? 
                 r3      P2  ? 
                 r4      P2    name 

Figure 5 Inner join semantics for the external uniqueness constraint in Figure 3(b) 

  
Although this example might seem unusual, we have encountered several real world cases involving 

this inner join semantics. In practice, uniqueness constraints involving optional roles may have either the 
inner join or outer join semantics. So we need a way to distinguish them. This can be done graphically, 
textually, or both. It can also be done on a role basis or a constraint basis.  
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For ORM, graphical external uniqueness constraints already indicate which roles are involved, so we 
only need to add a notation for indicating the join type for optional co-roles of the constrained roles. In 
general, an external uniqueness constraint may span two or more roles, so there could be cases with 
multiple joins involving an optional co-role. Moreover, as discussed later, even linear join-paths may 
involve many joins. So a complete solution to the problem theoretically requires that each join on the path 
be identified in some way as an inner or outer join. While graphical annotations can be invented to do this, 
we feel that pragmatically there is no need for such a general graphical solution. In the many real world 
cases we have met, a uniform inner/outer join interpretation has always been intended for optional role 
joins along the join path, and intuitively this seems sensible. For pathological cases of join paths with 
mixed join types on optional roles, we recommend that this be specified textually, using a language such as 
ConQuer, which is easily capable of dealing with such cases.  

If we thus assume that all joins on optional roles on the join path underlying an external uniqueness 
constraint are of the same type (inner or outer), we simply need to indicate which of these types applies to 
the overall constraint. In ORM we suggest that this is done graphically as follows: use the current notation 
for the inner join interpretation, and make this the default. For the outer join interpretation, adorn the 
circled “u” in some way (e.g. use a double line for the circle). 

For OSM, the co-occurrence arrow could be flagged as outer by appending a symbol (e.g. “+”). For 
attribute-association approaches such as ER and UML, an ORM-like notation could be added for linking 
association roles only, association roles and attributes, as well just attributes. If only attributes within a 
single entity type or class are involved, a more concise notation could be used by annotating the relevant 
uniqueness constraint component (e.g. {U1+}) assuming that such constraints are supported at all. Clearly, 
the attribute-free nature and greater expressive power of ORM and OSM makes it much easier to add 
support for join type disambiguation. 

In the previous examples, the join path underlying the external uniqueness constraint involves only 
one join. But in practice, the join path may involve many joins. Figure 6(a) shows an ORM schema for an 
example in [12, p. 647]. The “<<” indicators reverse the normal downwards/rightwards reading direction of 
predicates. The join path for the external uniqueness constraint involves three conceptual joins, on Country, 
State and City. Since all the join roles (shaded) are mandatory, the joins are all inner joins. Note that 
conceptual joins need not give rise to relational joins, since relations may combine multiple fact types. For 
instance, the ORM schema maps by default to the relational schema shown in Figure 6(b). At this level, the 
external uniqueness constraint is enforced by naturally joining the tables on country name and then 
ensuring that the countryCode, areaCode bag-projection is unique (this constraint is easily coded in SQL). 
The conceptual joins on State and City come for free at the relational level, since the relevant roles map to 
the same table. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 An external uniqueness constraint involving a join path with three joins 
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The join path in Figure 6(a) is unambiguous, since there is only one direct path between the co-roles of 
the two roles spanned by the external constraint. However suppose other associations exist between the join 
object types. For instance, suppose we add the association: City trades with State. There are now two possible 
join paths, since there are two ways to navigate from State to City. 

Figure 7 summarizes the problem of path ambiguity. To find the join path underlying the external 
uniqueness constraint, we need to find a path connecting roles r2 and r9, moving right from r2 and left from 
r9. Our choice is shaded, but there are three possible paths we could take in going between B and C. We 
could traverse the top predicate, performing the joins r2 = r3 and r4 = r9. We could traverse the middle 
predicate that implicitly underlies the subtype connection, performing the joins r2 = r5 and r6 = r9. Or we 
could traverse the bottom predicate, performing the joins r2 = r7 and r8 = r9.  

 
 

 
 
 
 
 
 
 

Figure 7 Join paths sometimes require explicit declaration of the join roles 

 
Ways to disambiguate the underlying path for external uniqueness constraints have specified in 

various procedures, such as the Uniquest algorithm [3]. Currently ORM does not include any graphic 
notation to highlight the relevant joins (as we have done here using shading). In general, shading is not 
adequate since a path may traverse the same predicate more than once. A general graphical solution may be 
provided by numbering the roles used to perform the joins, but this can lead to messy diagrams. A tool 
could prompt the user to select the list of join roles, and then toggle the display of the joins on/off under 
user control. An alternative is to use a textual language such as ConQuer to formulate all external 
uniqueness constraints that have multiple candidate join paths. 
 For non-ORM approaches, first basic support for external uniqueness is required, and then the join 
paths may be disambiguated graphically as for ORM, or textually if the method includes a sufficiently 
powerful formal query language. UML could use the Object Constraint Language (OCL) for such 
specifications [24], although OCL expressions often appear cryptic to non-technical domain experts. 

In ORM, a frequency constraint constrains the frequency (number of times) with which an object (or 
object sequence) that populates a role (or role sequence) may appear there for any given state of the 
information base. Frequency constraints may include lists and/or ranges of frequencies (e.g. 2, 4..7, >=20). 
Uniqueness constraints are equivalent to frequency constraints where the frequency equals 1. In 
conjunction with mandatory role and uniqueness constraints, frequency constraints cater for advanced 
forms of multiplicity and cardinality constraints, and also scale properly for n-ary associations.  

Of the modeling approaches discussed earlier, only ORM and OSM support external frequency 
constraints (i.e. frequency constraints spanning roles from different predicates). For this, ORM uses a 
frequency specification (e.g. 3..5) connected by dotted lines to the relevant role sequence, and OSM 
attaches the frequency specification to the arrow it uses in co-occurrence constraints. 

As for external uniqueness, external frequency constraints have an underlying join path. If the joins 
involve optional roles, then the join type (inner or outer) is potentially ambiguous. However we have never 
encountered a practical example of this, so recommend that inner joins be assumed, and a formal textual 
language such as ConQuer be used instead of a graphic notation if ever the outer join interpretation is 
required. 
 

3 SET-COMPARISON CONSTRAINTS INVOLVING JOINS 
 
Set-comparison constraints restrict the way the population of one role, or role sequence, relates to the 
population of another. ORM recognizes three kinds of set-comparison constraint, one for each of the 
subset, equality and exclusion comparators. In the literature, subset and exclusion constraints at the 
relational level are sometimes called inclusion and exclusion dependencies. The non-ORM modeling 
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approaches have either no support or only very limited support for these constraints. Detailed discussions 
of set-comparison constraint support in ER and UML may be found in [12,14]. We confine our attention 
here to set-comparison constraints between role sequences, at least one of which includes roles from 
different predicates, and therefore involves an underlying join path.  

Figure 8(a) shows an ORM model with a subset constraint from one role-pair to another. The subset 
constraint is depicted as a circled “⊆” embedded in a dashed arrow running from the source role sequence 
to the target role sequence. If the roles in the sequence are contiguous, the constraint connects directly to 
the junction of the roles. Otherwise, the roles in the sequence are indicated by a dotted line connecting the 
roles. With our example, the subset constraint runs from the role pair comprising the Advisor serves in Country 
predicate to the role pair comprising the first roles of the Advisor speaks Language and Country uses Language 
predicates.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 A join-subset constraint expressed in ORM and UML 

 
The constraint means that the set of advisor-country pairs populating the serves-in predicate must be a 

subset of the set of advisor-country pairs obtained by projecting on the advisor and country roles of the join 
path Advisor speaks a Language that is used by Country. This join path involves a conceptual join on Language, 
equating instances playing its two roles (shaded in the figure). In other words, if an advisor serves in a 
country, then that advisor must speak at least one language used by that country.  

Like the other approaches, UML has no graphic notation for expressing a join-subset constraint, but 
does allow the constraint to be expressed textually in a note attached to the relevant model elements (in this 
case the three associations), as shown in Figure 8(b). The other approaches could also be adapted to allow 
such usage of notes. 

In ORM, an equality constraint is equivalent to a subset constraint in both directions, and is denoted 
using a circled “=”. An exclusion constraint indicates that populations of the constrained role sequences 
must be mutually exclusive, and is denoted using a circled “X”. Examples of these may be found in [11, 
12]. As for subset constraints, it is possible that one of the role sequences involves a join path. 

The same considerations given to join paths underlying external uniqueness constraints may be raised 
for each join path involved in a set-comparison constraint. Although we have modeled numerous practical 
application domains involving join set-comparison constraints, the join types have always been inner joins. 
So rather than complicating the graphic notation for rare cases, we recommend that any set comparison 
constraints involving outer joins be specified textually using a formal language such as ConQuer. To 
disambiguate set comparison constraints over role sequences with multiple candidate join paths, exactly the 
same advice given earlier for external uniqueness constraints in this regard applies. 
 It is well known that any relational expression may be reformulated as a functional expression and 
vice versa. Although ORM is primarily disposed towards expressing textual constraints in association form 
(relational), its allowance of role names permits such constraints to also be expressed in attribute form 
(functional or multi-valued). Object-oriented languages such as OCL [24] and Object Definition Language 
(ODL) [5] use attribute form exclusively.  

Sometimes association form is preferable, because it verbalizes rules in a more natural way that 
domain experts can readily comprehend. Sometimes attribute form is preferable because it provides a 
simple, compact formulation. However, attribute form is inherently less stable than association form, so 
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there is a trade-off.  For example, the join subset constraint in Figure 8, may be verbalized in association 
form as shown in R1. 
 
(R1)  if an Advisor serves in a Country 
  then that Advisor speaks a Language 
   that is used by that Country 
 
A high-level, attribute-form language would enable the rule to be formulated simply using role path 
expressions and a built-in subset operator, as in R2. 
 
(R2)  Advisor: self.country is subset of self.languages.countries  
 
In practice, OCL and ODL require more circuitous formulations, but in principle the R2 syntax could be 
supported. This formulation assumes the names of roles (association ends) in Figure 8(b) are implicitly 
provided by names of the classes, pluralizing the names where the maximum multiplicity exceeds one. If 
the existence of other associations ambiguates this assumption, then role names should be explicitly 
provided in the model.  

Since business changes may cause attributes to be remodeled as associations or classes, rules in 
attribute form are inherently less stable than rules in association form. Another disadvantage of rolename-
based path expressions is that rolename plurality is potentially unstable. For example, suppose the advisory 
business decides to change its policy of allocating advisors to at most one country, instead allowing the 
same advisor to serve in more than one country. In the ORM model of Figure 8(a) this causes the 
uniqueness constraint on Advisor serves in Country to expand to cover both roles, but this has no impact on rule 
R1, which still applies. In the UML model of Figure 8(b), the “0..1” multiplicity constraint changes to “*”, 
so that the associated role name change should change from “country” to “countries”. This means rule R2 
also has to be changed since Advisor.country needs to be replaced by Advisor.countries. For manual rule 
specification, there is no way around this problem other than to ignore singular/plural name distinctions, 
rendering the rule less understandable. With tool support, this problem could be ameliorated by having the 
user select the roles from the diagram and letting the tool generate the rule verbalization, automatically 
updating it as needed when multiplicities change. 
 
 

4 METAMODELING AND MAPPING 
 
Adding new notations to a modeling language enables the modeler to capture more constraints in the 
language. For automated support however, the notations need to be catered for in the language’s 
metamodel, and mapping procedures need to be specified so that the high level rule specifications can be 
automatically translated into implementation code (e.g. relational DDL scripts). 

Our comparative review of ER, ORM and UML metamodels for data modeling purposes in [13] 
ignored any discussion of join type disambiguation and role path disambiguation for join constraints. 
Recently we extended the ORM metamodel to cater for these aspects. There is no space here for a detailed 
discussion of these extensions, but the metamodel fragment in Figure 9 provides the basic idea.   

A single role constraint (mandatory, unique etc.) spans a single list of roles. This is captured by the 
ternary SingleRoleListConstraint spans Role in Position. An external frequency constraint or external uniqueness 
constraint has an underlying join path as discussed earlier. If the join path is ambiguous (as in Figure 7), the 
user needs to specify the joins used along the path. The metamodel captures this join path by recording the 
list of entry and exit roles for each object type along the join path (see the other ternary). A similar 
approach may be adopted to capture role paths involved in set-comparison constraints over role sequences. 
Finally, if an external uniqueness constraint has an optional role in its join path, an inner join is assumed 
unless the constraint itself is specified as outer. This outer join setting applies to all optional roles along the 
constraint’s join path. 
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Figure 9 ORM metamodel fragment to capture the join type and join path of some constraints 

 
Algorithms to map ORM schemas to normalized relational schemas have been detailed elsewhere, e.g. 

[12, 20, 21 ]. These algorithms have been largely implemented in various tools, including the ORM source 
model solution in Microsoft Visio for Enterprise Architects. Currently however, the only ORM tool to fully 
automate the mapping of general ORM join paths with inner or outer joins is ActiveQuery [2], and this is a 
conceptual query tool rather than a conceptual modeling tool.  

Regardless of whether the modeling tool is based on ORM, ER, UML or OSM, mapping of join types 
and join paths to DDL for implementation in industrial DBMSs needs to cater for the differences in DBMS 
dialects. Even a basic discussion of the mapping process would need a paper in itself, so we confine our 
discussion to a simple example. Recall that the ORM schema in Figure 3(b) maps to the relation scheme in 
Figure 5(a): Role( roleId, predicateId, [roleName] ). How do we enforce the uniqueness constraint on (predicateId, 
roleName) in SQL? It is unsafe to simply generate the table check clause unique(predicateId, roleName), because 
this has different semantics for different back ends. Although the SQL standard interprets unique in the 
inner sense described earlier, SQL Server allows at most one null if a unique constraint or unique index is 
declared. To implement the inner join semantics required for this case, we generate the following table 
check clause.  

 
 check( not exists 

(select * from Role 
where roleName is not null 
group by predicateId, roleName 
having count(*) > 1 ) ) 

 
 To apply outer-join semantics to the uniqueness constraint, simply remove the where-clause. If the 
model is mapped to a non-relational target, such as C# code, then the constraint is handled very differently. 
In spite of such mapping complexities, the conceptual model is the right place to specify the rules in the 
first place, where they can be readily understood and validated by the domain expert. Implementing 
mapping algorithms to transform the high level representation to code is a lot of work, but once done the 
pay off is significant. 

 
5 CONCLUSION 

 
This paper examined a set of constraints that are often neglected by modeling approaches. Support for these 
constraints in various modeling approaches was discussed, and proposals for improved support were 
suggested. These constraints involve one or more conceptual join paths in the underlying conceptual 
schema. For external uniqueness constraints, joins on optional roles may be inner or outer, so the relevant 
choice needs to be clearly made and catered for in mapping algorithms. For join constraints with more than 
one candidate join path, the relevant path needs to be identified and mapped. Basic extensions to notations, 
metamodels and mapping procedures were outlined to address these issues 

External
UC

is outer

SingleRoleList
Constraint

External
FCorUC

Role Position

… spans … in ...

{1..}

… uses join- … in ...



Proceedings EMMSAD’02  page 131 

There are different viewpoints on how complete a conceptual modeling language should be for 
capturing constraints, especially graphically. Practical experience indicates that the kinds of constraint 
discussed in this paper frequently exist in the application domain being modeled. Including a constraint in 
the graphical language often makes it easier for the modeler to think about the constraint, but there is a 
limit to how many concepts may be included in a graphical language before making it too complex for the 
modeler to work with. We have found it convenient in real world modeling work to incorporate the kinds of 
constraints discussed in this paper in the graphical modeling language, but only empirical studies can show 
whether this perception is valid for the wider community. We recommend such a study as a topic for future 
research. 
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