
Uniqueness Constraints on Objectified Associations

Terry Halpin
Northface University

Abstract: Unlike UML and some ER versions, ORM currently allows a fact type to be objectified only
if it either has a spanning uniqueness constraint or is a 1:1 binary fact type. This article argues that this
restriction should be relaxed, and replaced by a modeling guideline that allows some n-ary associations
to be objectified even if their longest uniqueness constraint spans n-1 roles. The pros and cons of
removing this restriction are discussed, and illustrated with examples.

Introduction

In this article, the terms “relationship type”, “association”, and “fact type” all denote typed predicates (e.g.
Person plays Sport). In many business domains, it is perfectly natural to think of certain relationship instances
as objects about which we wish to talk. This process of making an object out of a relationship is called
objectification (also known as reification, or nesting), and is supported by Object-Role Modeling (ORM)
[3, 4, 5] and the Unified Modeling Language (UML) [6]. This article assumes basic familiarity with these
modeling approaches.

The ORM schema in Figure 1(a) objectifies the fact type Person plays Sport as Play, which is then used as
an object type in the fact type Play is at SkillLevel. The latter fact type is said to be nested, as it nests another
fact type inside it. The exclamation mark “!” appended to “Play” indicates that Play is independent, so
instances of Play may exist without participating in other fact types. This is consistent with the optional
nature of the first role of Play is at SkillLevel. Figure 1(b) depicts the same example in UML. Here the skill
level fact type is represented as an optional attribute on the association class Play.

Person Sport

“Play !”

plays

SkillLevelis at

Person Sport
* *

skillLevel [0..1]

Play

(a) (b)

Figure 1 Objectifying an association with a spanning uniqueness constraint in (a) ORM and (b) UML.

Popular, industrial versions of Entity Relationship (ER) Modeling typically provide little or no support
for objectification. However, academic versions of ER often provide partial or full support for
objectification (e.g. see [1]). As an example of partial support, some ER versions allow objectified
relationships to have attributes but not to play in other relationships.

Notice that the objectified association Person plays Sport has a spanning uniqueness constraint. In early
versions of ORM, no association could be objectified unless it had a spanning uniqueness constraint. Later,
I relaxed that restriction, to allow binary 1:1 associations to be objectified [2]. Currently, ORM allows no
other uniqueness constraint patterns on objectified associations. In particular, ORM forbids the following
two kinds of associations to be objectified:

(1) An n:1 (or 1:n) binary association
(2) A ternary or longer association whose longest uniqueness constraint spans exactly n-1 roles.

We exclude from consideration any n-ary association whose longest uniqueness constraint spans fewer than
n-1 roles, because such an association is compound rather than elementary. Compound associations can be
split into smaller associations without information loss, so may lead to redundancy problems if used as

1

primitive associations. Both UML and those versions of ER that support objectification allow cases (1) and
(2) to be objectified. The rest of this article discusses whether ORM should be modified to do likewise.

Objectifying n:1 (and 1:n) associations

The ORM and UML schemas in Figure 2 are based on an academic ER example ([1], p. 34) that objectifies
the n:1 association Person was born in City. This n:1 association may be viewed in the inverse direction as the
1:n association City is birthplace of Person, so any comments made here about n:1 associations apply equally to
1:n associations.

Person City

“Birth !”

was born in

Date
occurred on

Person City
* 0..1

birthdate [0..1]

Birth

(a) (b)

Figure 2 Objectifying an n:1 association in (a) ORM and (b) UML.

 The Figure 2 example is structurally similar to that of Figure 1 except that the uniqueness constraint
on the objectified binary spans just one role, not two. This nesting is currently illegal in ORM, mainly
because the nested fact type Birth occurred on Date is compound, rather than elementary. It can be split without
information loss into the two simpler fact types Person was born in City and Person was born on Date, as shown in
the flattened (un-nested) schemas of Figure 3. Notice that the nesting in Figure 2 allows recording of birth
dates only if the birth city is known. In the flattened schemas of Figure 3 this is captured by an ORM subset
constraint, or a UML textual constraint (expressed here in the Object Constraint Language (OCL)).
Although such a constraint might exist in some business domains, in practice it is far more likely for such
n-1 associations that no such constraint exists. This is one reason to avoid nesting n-1 associations.

Person City

was born in

Date

was born on

birthdate [0..1]

Person City
* 0..1

(a) (b)

⊆

{(Person.birthdate -> isEmpty())
or
(Person.city -> notEmpty())}

Figure 3 The nested fact type may be split into two binary fact types as shown.

For example, suppose we initially model things using nesting as shown in Figure 2, and populate the

model with lots of data. If we later discover that it is possible to know a person’s birth date without
knowing their birth city, then we need to perform drastic surgery to the schema to cater for this
possibility—remove the objectification, and attach the birth date fact type directly to Person. If the schema
is also used as the implementation data structure (as it might be for an object-oriented class model), then we
also need to modify the data. If instead we transformed the schema to a normalized data structure for
implementation, then no changes are needed to the data population. In the latter case, the relational
mapping procedure is now more complex, because effectively it must pre-process the schema to remove the
nesting before applying a standard mapping procedure such as Rmap [4]. This is another reason to avoid
nesting n-1 associations. In contrast, the task of evolving the flattened models of Figure 3 to allow
recording of a person’s birth date without the birth city is trivial: simply remove the subset constraint; no
fact types need to be restructured, and no change is needed to the data population.

2

Although objectification of n:1 associations might sometimes be natural from a linguistic perspective,
this kind of nesting typically portrays the business domain in an unnecessarily complicated way (why
introduce birth cities in order to talk about birth dates?) that is de-normalized (the nesting includes an
embedded functional dependency). Given this problem, and the disadvantages discussed earlier, I suggest
that as a general rule we continue to treat nesting of n:1 associations as illegal in ORM.

There seems to be only one case where we might even consider breaking this rule. This is the case
where the uniqueness constraint is likely to change over time to a fully spanning uniqueness constraint. In
such cases, it might be argued that we simplify the task of model (schema plus population) evolution by
nesting the original n:1 association (which may later evolve to an m:n association). In practice, such cases
seem to be rare. Figure 4 depicts a borderline case based on an example I used in an earlier paper [2] to
argue against nesting such cases. Although two of the roles have been made mandatory here to show some
variations from the earlier cases, this structural change is not central to the discussion.

Moon Planet

“Orbit”

orbits

Periodhas

Moon Planet
* 1

period

Orbit

(a) (b)

Figure 4 Nested approach to modeling some orbital details in (a) ORM and (b) UML.

The corresponding, flattened schemas for this example are shown in Figure 5. Because each moon
orbits only one planet, we lose no information by attaching the orbital period fact type directly to Planet.
For clarification purposes, a role name has been added to the ORM schema and a predicate name to the
UML schema. It might be argued that the nested version in Figure 4 better represents the close semantic
connection between the two fact types (they both relate to orbits). In Figure 5(a), this semantic affinity is
formally suggested by the implicit equality constraint between the first roles of the two fact types (implied
by the mandatory constraints), and informally suggested by the inclusion of “orbits” within both the
predicate readings. A similar comment can be made about the UML schema. This is a minor argument for
allowing the nested version.

Moon Planet
Orbits

Period

orbits in
orbitalPeriod

Moon Planet
* 1

(a) (b)

5orbits

[orbitalPeriod]

Figure 5 Flattened version of the orbital details example.

The main argument however is based on semantic stability. Suppose that tomorrow we discover in

some solar system a moon that orbits two planets, as depicted in Figure 6, where we can sensibly talk of the
moon having two orbits (one for each planet), possibly with different orbital periods. To cater for this
possibility, we might then weaken the single-role uniqueness constraint on Moon orbits Planet to a spanning
uniqueness constraint.

Figure 6 A moon orbiting two planets.

3

 This simple change is all that is required to modify the nested schemas to cater for the new possibility,
as shown in Figure 7. Any previous data population is also retained; we simply add the new facts into the
same structures. However, because the orbital period is now a function of the orbit only rather than the
moon, the flattened version requires a drastic change, since the period fact type must now be restructured to
the nested version or some equivalent schema (e.g. absorbed into a ternary fact type).

Moon Planet

“Orbit”

orbits

Periodhas

Moon Planet
* *

period

Orbit

(a) (b)

Figure 7 The nested approach is easily adapted by weakening a uniqueness constraint.

 While the example above may seem rather improbable, it is easy to imagine more mundane cases
where we might decide to relax a uniqueness constraint. In consideration of the above, the following
heuristic seems appropriate for nesting of n:1 associations.

• Do not objectify an n:1 association unless it may weaken to an m:n association at a later time.

Objectifying n-ary associations whose longest uniqueness constraint spans n-1 roles

In an earlier paper [2], I argued that we should allow nesting of 1:1 associations to avoid making arbitrary
(and perhaps politically incorrect) preferences at the conceptual level. For example, if we were not to
objectify the current marriage fact type shown in Figure 8, we would need to introduce Husband and Wife
subtypes of Person and then make an arbitrary choice as to which of these subtypes should have the
marriage date fact type attached.

Person

is husband of / is wife of

“CurrentMarriage”

Date
occurred on

(a) (b)
Person

husband

wife

0..1

0..1

marriageDate

CurrentMarriage

Figure 8 Nesting of 1:1 associations in allowed in both (a) ORM and (b) UML.

 The approach I am about to introduce for n-ary fact types (n > 2) may be regarded as a logical
extension of the rule for the 1:1 case. Consider the example shown in Figure 9. The objectified, ternary
association in Figure 9(a) has two overlapping uniqueness constraints, each spanning n-1 (in this case 2)
roles. The constraint on the first two roles of the ternary indicates that within any given sport any given
athlete has at most one current rank. The constraint on the last two roles indicates that within any given
sport any given rank is currently assigned to at most one athlete (i.e. no ties are allowed). For each current
ranking of an athlete in a given sport, we record the date on which this ranking was awarded, and optionally
the achievements on which this award was based.

Figure 9(b) depicts the same business domain in UML, where the ternary association is objectified as
an association class, the award date fact type is modeled as an attribute of this class, and the achievement
fact type is modeled as a separate association.

4

Athlete

Sport

Rank
… in … has ...

“CurrentRanking”

Date

is based on

was awarded on

Achievement

(a)

Athlete

Sport

Rank

(b)

awardDate

CurrentRanking Achievement

*
0..10..1

* *

Figure 9 Objectifying a ternary association with overlapping uniqueness constraints.

 The schema in Figure 9(a) is currently illegal in ORM, because the objectified relationship is not 1:1
and it has no spanning uniqueness constraint. To transform it into a legal ORM schema, there are two
options based on which uniqueness constraint in the ternary is chosen for the objectification. The option
shown in Figure 10 uses the uniqueness constraint spanning the roles played by Athlete and Sport in the
ternary as the basis for objectification. This model is legal, but slightly more complex because the second
uniqueness constraint on the former ternary is now specified as an external uniqueness constraint.

Athlete Sport
is ranked in

Rank

u“CurrentRanking”

assigned

Date

was made on

Achievement

<< is based on

Figure 10 Objectifying a binary based on the first uniqueness constraint in the former ternary.

 The alternative shown in Figure 11 uses the uniqueness constraint spanning the roles played by Rank
and Sport in the ternary as the basis for objectification. Structurally, there is no formal feature in the
schema of Figure 9(a) that determines which of the schemas in Figure 10 and Figure 11 is preferable.
Pragmatically, we would often prefer the schema in Figure 10 if in the global schema Athlete played other
roles, and Rank played no other roles. In such a case, the UML schema might depict the Rank fact type
using an attribute. Suppose however that Rank does play other roles, and that at most one other role is
played by Athlete. For example, we might normally use numbers (1, 2, 3,…) to identify ranks but also
record rank names (e.g. “Top”, “Runner-up”, “Third”, …). In this case, there seems to be no formal way of
deciding which of the schemas in Figure 10 and Figure 11is preferable.

5

Rank Sport
is assigned in

Athlete

u“CurrentRanking”

was assigned to

Date

was made on

Achievement

<< is based on

Figure 11 Objectifying a binary based on the second uniqueness constraint in the former ternary.

One can imagine other cases where the decision of which binary nesting to choose is arbitrary. For

example, replace Rank by Prize, where the same prize (e.g. a car or trip) may be awarded in many sports,
and many details (monetary value etc.) may be recorded for prizes. In such cases, it seems reasonable to
allow schemas like that in Figure 9(a), simply to avoid forcing the modeler to make an arbitrary choice of
which uniqueness constraint to use as the basis for nesting. The 1:1 case considered earlier may now be
seen as a special case of a predicate with multiple uniqueness constraints offering alternative candidates for
nesting.
 The other case where it makes sense to allow objectification of n-ary associations that have no
spanning uniqueness constraint is where it is possible that the uniqueness constraint pattern on the
association may change to a spanning uniqueness constraint at a later time. The arguments for this
allowance are analogous to the arguments presented in the previous section for binary associations.

Conclusion

The foregoing discussions may be summarized by the following modeling heuristic:

Do not objectify an association with no spanning uniqueness constraint unless
its uniqueness constraint pattern may weaken to a spanning uniqueness constraint later

 or
it has at least two uniqueness constraints, and there is no obvious choice as to which of these is
the best basis for objectification.

Objectification of associations with no spanning uniqueness constraint in cases not covered by these
exceptions is likely to be bad modeling. A modeling tool could assist by reminding the modeler of the
above heuristic whenever the modeler objectifies a fact type with no spanning uniqueness constraint. If you
have any constructive feedback on this article, please e-mail me at: thalpin@comcast.net.

References

1. Batini, C., Ceri, S. & Navathe, S. B. 1992, Conceptual Database Design, Benjamin/Cummings,

Redwood City.
2. Halpin, T.A. 1993, ‘What is an elementary fact?’, Proc. First NIAM-ISDM Conference, eds G. M.

Nijssen & J. Sharp, Utrecht, (Sep), 11 pp. Online at http://www.orm.net/pdf/ElemFact.pdf.
3. Halpin, T. A. 1998 (revised 2001), ‘Object Role Modeling: an overview’. Online at

http://www.orm.net/pdf/ORMwhitePaper.pdf.
4. Halpin, T.A. 2001, Information Modeling and Relational Databases, Morgan Kaufmann Publishers,

San Francisco.
5. Halpin, T.A., Evans, K, Hallock, P. & MacLean, W. 2003, Database Modeling with Microsoft® Visio

for Enterprise Architects, Morgan Kaufmann, San Francisco.
6. Object Management Group 2003, UML 2.0 Specification (see Infrastructure and Superstructure

documents). Online at http://www.omg.org.

6

mailto:TerryHa@microsoft.com
http://www.orm.net/pdf/ElemFact.pdf
http://www.orm.net/pdf/ORMwhitePaper.pdf
http://www.omg.org/

	References

