
Microsoft’s new database modeling tool: Part 1

Terry Halpin
Microsoft Corporation

Abstract: This is the first in a series of articles introducing the Visio-based database modeling
component of Microsoft Visual Studio Enterprise Architect. The initial emphasis is on the Object-Role
Modeling (ORM) support provided by this tool.

Introduction

The database modeling solution within Microsoft Visio Enterprise 2000 provided basic support for
conceptual information analysis using Object-Role Modeling (ORM), as well as logical database modeling
using relational, IDEF1X, crowsfoot and object-relational notations. ORM schemas could be forward
engineered to logical database schemas, from which physical database schemas could be generated for a
variety of database management systems (DBMSs). Physical databases could have their structures reverse
engineered to logical database schemas or to ORM schemas. The recently released Microsoft Visio 2002
products include Standard and Professional editions only. The Professional edition subsumes the formerly
separate Technical edition, but does not include Enterprise. Although Visio 2002 Professional does include
an ORM stencil, this is for drawing only—its ORM diagrams cannot be mapped to logical database
schemas and cannot be obtained by reverse engineering from a physical database. Visio 2002 Professional
includes a database modeling solution for defining new logical database schemas or reverse engineering
them from existing databases, but forward engineering to physical database schemas is not provided.

For some time, Microsoft has supported database design and program code design (using UML) in its
Visual Studio product range. After acquiring Visio Corporation, Microsoft had two separate products
(Visio Enterprise and Visual Studio) that overlapped significantly in functionality, with each supporting
database design and UML. As a first step towards unifying these product offerings, the deep modeling
solutions formerly within Visio Enterprise have been enhanced and moved into a new Microsoft product
known as Visio for Enterprise Architects (VEA), included in Visual Studio .NET Enterprise Architect.
These Visio-based modeling solutions are included in beta 2 of Visual Studio. NET Enterprise, with the
final release to follow later. The deep ORM solution in VEA is completely different from the simple ORM
drawing stencil in Visio Professional, and cannot translate between them. However, the database modeling
solution in VEA can import logical database models from Visio Professional, and then forward engineer
them to DDL scripts or physical database schemas.

This series of articles provides a simple introduction to using the database modeling solution within
VEA. Various aspects of these articles (e.g. company names, product names, user interfaces) are trade-
marked, copy-righted or patented by Microsoft Corporation. In this article, the emphasis is on the basics of
the ORM solution. Familiarity with ORM and relational database modeling is assumed. Overviews of
ORM are online [1, 2]. A deep treatment of ORM and database modeling is discussed in my latest book [3].

Creating a new ORM model

The Visio-based modeling tool runs as a separate solution within Visual Studio .NET Enterprise Architect.
When you open the tool, the opening screen of the beta looks like Figure 1. Choose Database as the
Drawing Type, then select the relevant ORM template. If in the United States, you normally choose ORM
Source Model (US units), as shown—this defaults the page size to Letter, and measurements to inches. As
you hover the cursor over a template icon, the icon is highlighted and a tool tip appears on the left. Visio
provides both US and International (metric) versions of templates. If you select ORM Source Model
(without “(US units)”), the page size defaults to A4 and the units to metric. [Note: in the final release,
templates for just your country’s standard unit system are installed unless you choose otherwise.]

When you select an ORM Source Model template, a screen like Figure 2 appears. In addition to the
menus and icons at the top, there is an ORM stencil, a Drawing window, and an area for displaying the
Business Rules editor, Database Properties sheet and other windows you might open (e.g. Verbalizer).

Figure 1 Choosing to work with an ORM Source model

Figure 2 ORM stencil, Drawing window and Business Rules window

 To reduce the space consumed by Figure 2, I’ve resized the display quite a bit. Normally the drawing
window will occupy most of the screen. By default, the three shapes in the ORM stencil appear on the same
horizontal row. You can give the drawing window more room by reducing the width of the ORM stencil so
that the shapes line up vertically, as shown here. To do this, hover the cursor on the border between the
stencil and the drawing window until the cursor changes to a resize cursor, then drag it to the left.

Adding sentence types using the Fact Editor

You can add sentence types (fact types or reference types) to an ORM model by dragging Object Type and
Predicate shapes from the stencil to the drawing window. Alternatively you can add sentence types using
the Fact Editor. For now, let’s use the Business Rules editor to do this. Move the cursor to the bottom row
displayed in the Fact Types pane of the Business Rules window (in our example, there is only one row).
Now either start typing the fact type or hit the F2 key. This causes the Fact Editor to appear. You can also
invoke the Fact Editor by choosing Database > View > Fact Editor from the database menu at the top of the
screen. By default, the fact editor’s input style is Guided, as shown in Figure 3.

Figure 3 Fact Editor using Guided input style
 You can enter a binary relationship giving both a forward reading (e.g. Employee works for
Department) and an inverse reading (e.g. Department employs Employee). If needed, the arity (number of
roles) in the relationship can be changed by choosing a different setting from “Binary”. The Object pane
allows you to classify the object type as an entity type, value type or external object type. In the case of an
entity type with a simple identification scheme, you can add its reference mode (e.g. empNr for Employee
and code for Department).
 Once you are familiar with the Fact Editor, you will probably want to change its input style to
Freeform. This allows you to enter sentence types much faster by using a formal syntax. You can use the
radio button to change to Freeform. You can also make Freeform the default by going to the Database menu
at the top of the screen, choosing Database > Options > Modeling …, then opening the Fact Editor pane and
setting the preferred mode to Freeform, as shown in Figure 4. In many languages it is convenient to identify
object types by starting their name with a capital letter, assuming the name is a single word (e.g. Employee,
VicePresident). For languages where this doesn’t work, or when the name uses multiple words separated by
spaces, bracketed mode should be chosen: this encloses the object type name in square brackets (e.g.
[employee], [vice president]).

Figure 4 Setting the default input style for the Fact Editor to Freeform

 In Freeform mode, reference modes appear in parentheses after the object type name. If an inverse
reading is supplied, a slash “/” is used to separate forward and inverse readings.
Figure 5 shows an example.

Figure 5 Fact Editor using Freeform input style

 Once a reference scheme has been supplied for an entity type, there is no need to repeat the reference
scheme in specifying later fact types. Unlike entity types, value types (e.g. EmployeeName, RoomNr) have
no reference scheme, since their instances are just literal constants (e.g. character strings or numbers used
to name or refer to entities) so they identify themselves. In Freeform mode, value types are indicated by
appending empty parentheses “()”. Examples of some fact types are given below using the formal,
Freeform syntax:

Employee(empNr) works for / employs Department(code)
Employee has EmployeeName()
Employee has MobileNr()
Employee drives / is driven by Car(regNr)

 Use the fact editor now to enter these fact types (using either Guided or Freeform input). Hit the Apply
button after each of the first three fact types to have the fact type added. When you have entered the fourth
fact type, hit OK: this adds the last fact type and then closes the fact Editor. The fact types do not yet appear
on the drawing window, but should now be listed in the Business Rules editor. If you move the cursor to
one of these fact types, an Edit button appears to its right (see Figure 6). If you click the Edit button, it
brings up the Fact Editor with that fact type displayed for editing. This provides one way to add basic
constraints and examples to fact types.

Figure 6 Fact types are listed in the Business Rules editor, and may be edited

Adding basic, internal constraints using the Fact Editor

A constraint is internal if it applies to just one predicate; otherwise it is external. The fact editor allows you
declare the following internal constraints: internal uniqueness, simple mandatory, internal frequency and
ring constraints. It does not allow you to specify internal, set-comparison constraints (e.g. an exclusion

constraint between two roles of the same predicate), external constraints (e.g. an external uniqueness
constraint, or a set-comparison constraint between two predicates) or value constraints (e.g. restricting
Sexcode values to {‘M’, ‘F’}). In practice, constraints declared in the fact editor are best restricted to
simple internal uniqueness and simple mandatory constraints. To declare any other kind of constraint, there
is a much faster method (see Part 2 of this series of articles).

To add a constraint on a fact type displayed in the Fact editor, choose the Constraints tab. By default,
the constraints pane combines uniqueness and mandatory constraints to make it faster to specify them. For
instance, in Figure 7 choosing “exactly one” means both “at least one” (mandatory) and “at most one”
(unique). The constraint symbols and verbalization automatically appear to help you see the result of your
choice. If you don’t want to use this default shortcut, open the Database Modeling Preferences dialog
(Figure 4) and uncheck the option that indicates combined uniqueness and mandatory (UM).

Figure 7 Adding constraints in the Fact Editor

 For practice, use the Fact editor to add each of the following constraints. In the current version of the
tool, “some” is used instead of “the same” in the final constraint, which indicates that the drives
relationship is optional and many-to-many.

Each Employee works for some Department
Each Employee works for at most one Department
Each Employee has some EmployeeName
Each Employee has at most one EmployeeName
Each Employee has at most one MobileNr
It is possible that the same Employee drives more than one Car
 and that the same Car is driven by more than one Employee

Adding examples to fact types

It is a good idea to include examples for all fact types. To add a constraint on a fact type displayed in the
Fact editor, click the Examples tab, and enter enough examples to illustrate the relevant constraints. For
example, Figure 8 shows three fact instances for our Employee works for Department fact type. Here employees
101 and 102 works for the sales department(SLS) and employee 103 works for the marketing department

(MKTG). The population is consistent with our situation where each employee works for at most one
department (first column values are unique) but the same department may employ more than one employee
(SLS is duplicated in column 2).

Figure 8 Adding example fact instances for Employee works for Department

You can use the Analyze button to request the tool to induce the constraints from your examples, or to

check for inconsistencies between your data and your constraint specification. Try it out for yourself. This
is a very useful feature for validating constraints.

Saving a model

To save your model, choose File > Save from the File menu, or click the Save (diskette) icon. This opens the
SaveAs dialog box. Choose the folder where you want to save the model, add a filename for the model, hit
the Save button in the dialog, then hit OK in the properties dialog. The file will be saved with the extension
“.vsd” (Visio document).

Displaying sentence types on the drawing

To display on the diagram any sentence types entered using the Fact Editor, first locate the fact types of
interest in the Business Rules editor. To select a contiguous series of fact types, hold the Shift key down as
you select the first and last fact type in the series. All but the first fact type will appear highlighted. You can
then drag the fact types on to the drawing page where you want them displayed.
 Try this now for the four fact types in our model. The diagram appears by default as shown in Figure
9. You can finesse the display by moving the predicate text and object types around.
 A handy alternative is to open the Object Types pane of the Business Rules window, drag out one or
more the relevant object types, and use the Show Relationships option. For example, if you drag the
Employee object type onto any drawing page, right-click Employee, and select Show Relationships from its
right-click menu, all the relationships in which Employee plays will be displayed on that page. This
ShowRelationships feature is an extremely useful feature in schema browsing and in reverse engineering. It
is one of many new features that were not provided previously in VisioModeler or Visio Enterprise.

Employee
(empNr)

works for / employs

has

drives / is driven by

has

EmpName

Car
(regNr)

Department
(code)

MobileNr

Figure 9 Diagram formed by dragging the four fact types from the Business Rules editor

Mapping an ORM model to a logical database model

To map an ORM model to a logical database model, you first add the ORM model to a database model
project, then build it. From the File menu, open the logical database modeling solution by choosing File >
New > Database > Database Model Diagram (US units). If you want the metric template, choose just Database Model
Diagram without the “(US units)”. The screen should now look like Figure 10, except that I have reduced the
size of the drawing window significantly. The “Entity Relationship” stencil can be used to create logical
database models from scratch, but for now we will derive the database model from our ORM model.

Figure 10 The logical database modeling solution

 To create a database model project, choose Database > Project > Add existing document from the Database
menu. An Add Document to Project dialog box should now appear. Use the “Look in:” field to navigate to
your saved ORM model, then hit the Open button. The ORM model (mine was called JCM1.vsd) should
then be listed in the project window. Now save the project file by hitting the Save icon on the main menu
and giving it a filename (I chose ProjJCM1). The project file will also have the extension “.vsd”. The name
and page of your current model is always listed in the title bar at the top of the screen. Figure 11 shows
what the screen should look like at this stage.

Figure 11 A database model project that includes an ORM source model

 Now build the logical model by choosing Database > Project > Build from the Database menu. The
relational schema is now automatically built, and the resulting table schemes appear in the Tables and
Views window at the left of the screen (see Figure 12).
 To see these table schemes on a diagram, drag them onto the drawing page. The result is shown in
Figure 13. There are two table schemes, with one foreign key connection between them. Each table has its
name in the shaded header, with its columns listed below. Primary keys are underlined, marked “PK” and
appear in the top compartment for the columns. Mandatory (not null) columns are in bold. Foreign key
columns are marked FKn where n is the number of the foreign key with a table. In this case we have only
one foreign key that targets the primary key of the Employee table. The foreign key connection itself is
depicted as an arrow from the foreign key to its target key.
 In this example, the names of the tables and columns are those that are generated automatically by
default. In practice we would normally rename many of these and also change many of the default data
types that have been chosen. Various configuration options exist for controlling how table and column
names are generated. In practice it’s best to set the data types on the ORM model, where object types
correspond to conceptual domains. The correct data types then automatically propagate to all the attributes
based on these domains. Such issues are ignored in this first article.

Figure 12 Two table schemes are built by mapping the ORM model

 Employee

PK Employee empNr

Works Department code
EmpName
MobileNr

Employee drives Car

PK,FK1 Employee empNr
PK Car regNr

Figure 13 The relational schema mapped from the ORM model

Generating the physical database schema

You can generate the internal schema for a selected target DBMS by clicking the Database > Generate from
the Database menu. Generation gives you the option of generate the DDL script or than having the tool
build the tables for you. It is usually best to first generate the DDL script, which you can later execute
within your chosen DBMS. Follow the steps in the generate wizard, choose your driver (e.g. Microsoft
SQL Server 2000), enter a database name (e.g. mydb), accept defaults for the next screen, and choose Yes
to view the generated DDL script, then save the DDL script as a text file.

Conclusion

This article has only touched on the basics of creating a very simple ORM model and then mapping it to a
logical and then physical database schema. Later articles will examine how to specify much more powerful
ORM models involving advanced constraints and nesting, and also provide more details about the logical
database modeling facilities. You can gain some idea of the more advanced features by playing with the
Employee ORM Source Model that is included in the sample files issued with the product. If you have any
constructive feedback on this article, please e-mail me at: TerryHa@microsoft.com.

References

1. Halpin, T. A. 1998a, ‘Object Role Modeling: an overview’, white paper, (online at www.orm.net).
2. Halpin, T.A. 1998b, ‘Object-Role Modeling (ORM/NIAM)’, Handbook on Architectures of

Information Systems, Bernus, P., Mertins, K. & Schmidt (eds), Springer, Heidelberg, Ch. 4. (online at
www.orm.net).’

3. Halpin, T.A. 2001, Information Modeling and relational Databases, Morgan Kaufmann Publishers,
San Francisco (www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-672-6).

mailto:TerryHa@microsoft.com
http://www.orm.net/
http://www.orm.net/
http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-672-6

	Adding sentence types using the Fact Editor
	Adding basic, internal constraints using the Fact Editor
	Adding examples to fact types
	
	Saving a model

	Displaying sentence types on the drawing
	Mapping an ORM model to a logical database model
	Now build the logical model by choosing Database > Project > Build from the Database menu. The relational schema is now automatically built, and the resulting table schemes appear in the Tables and Views window at the left of the screen (see Figure 12)
	To see these table schemes on a diagram, drag them onto the drawing page. The result is shown in Figure 13. There are two table schemes, with one foreign key connection between them. Each table has its name in the shaded header, with its columns listed b
	
	
	Generating the physical database schema

	References

