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Abstract: This paper provides formal semantics for an extension of the Object-
Role Modeling approach that supports declaration of dynamic rules. Dynamic 
rules differ from static rules by pertaining to properties of state transitions, ra-
ther than to the states themselves. In this paper we restrict application of dy-
namic rules to so-called single-step transactions, with an old state (the input of 
the transaction) and a new state (the direct result of that transaction). These dy-
namic rules further specify an elementary transaction type by indicating which 
kind of object or fact (being added, deleted or updated) is actually allowed. Dy-
namic rules may declare pre-conditions relevant to the transaction, and a condi-
tion stating the properties of the new state, including the relation between the 
new state and the old state. In this paper we provide such dynamic rules with a 
formal semantics based on sorted, first-order predicate logic. The key idea to 
our solution is the formalization of dynamic constraints as static constraints on 
the database transaction history. 

1 Introduction 

Object-Role Modeling (ORM) is a fact-oriented approach for modeling, transforming, 
and querying information in terms of the underlying facts of interest, where facts and 
rules are verbalized in language understandable by nontechnical users of the business 
domain. In contrast to attribute-based modeling approaches such as Entity Relation-
ship (ER) modeling [5] and class diagramming in the Unified Modeling Language 
(UML) [17], ORM models are attribute-free, treating all facts as relationships (unary, 
binary, ternary etc.). For example, instead of the attributes Person.isSmoker and Per-
son.birthdate, ORM uses the fact types Person smokes and Person was born on Date. 

Other fact-oriented approaches closely related to ORM include CogNIAM 
(www.pna-group.com), Fully-Communication Oriented Information Modeling (FCO-
IM) [2], and the Semantics of Business Vocabulary and Business Rules (SBVR) [19] 
specification recently approved by the Object Management Group. A basic introduc-
tion to ORM may be found in [11] and a thorough coverage in [12]. The version of 
ORM discussed in this paper is ORM 2 [10], as supported by the NORMA tool [7]. 

Business rules include constraints and derivation rules. Static rules (also known as 
state rules) apply to each state of the information system that models the business 
domain, and may be checked by examining each state individually (e.g. each moon 
orbits at most one planet). Dynamic rules reference at least two states, which may be 



either successive (e.g. no employee may be demoted in rank—this kind of dynamic 
rule is known as a transition constraint) or separated by some period (e.g. invoices 
ought to be paid within 30 days of being issued). ORM is richer than ER or UML in 
its ability to depict static constraints graphically, but unlike UML it currently has no 
graphic notation (e.g. activity diagrams) to specify business processes. To capture dy-
namic rules, UML supplements its graphical notations with formulae in the Object 
Constraint Language (OCL) [18, 24], but the OCL syntax is often too mathematical 
for validation by nontechnical users. 

Since the 1980s, many extensions to fact-oriented approaches have been proposed 
to model temporal aspects and processes (e.g. [4, 8, 13, 14, 15, 21, 22]). For a brief 
review of such work see [1], where we in conjunction with two colleagues introduced 
to ORM a purely declarative means to formulate dynamic constraints on single-step 
transactions, with an old state (the input of the transaction) and a new state (resulting 
from that transaction). Such dynamic rules specify an elementary transaction type in-
dicating which kind of object or fact is being added, deleted or updated, and (option-
ally) pre-conditions relevant to the transaction, followed by a condition stating the 
properties of the new state, including the relation between the new state and the old 
state. These dynamic rules are formulated in a syntax designed to be easily validated 
by nontechnical domain experts. In this paper, we focus on providing a formal seman-
tics for the basic rule patterns for dynamic rules found in [1]. Such a formalization 
supports further understanding of dynamic rules, and also provides a step to further 
tool support. 

Substantial research has been carried out to provide logical formalizations of dy-
namic rules, typically using temporal logics (e.g. [9], ch. 8) or Event-Condition-
Action (ECA) formalisms (e.g. de Brock [3], Lipeck [16], Chomicki [6], Paton & 
Díaz [20], Snodgrass[23]). Our approach differs from previous work by treating a dy-
namic rule as a special kind of static rule on the transaction history. We define the 
semantics of a dynamic rule by making explicit the log of all previous transaction in-
stances pertaining to that specific rule. Snapshot data are maintained in the user data-
base, whereas historical data are kept in the log database. This logging semantics al-
lows us to formalize dynamic constraints in a static way, using first-order predicate 
logic. ORM model fragments associated with dynamic rules may also be fully forma-
lized in this way, as first described in [9] using unsorted predicate logic; for ease of 
readability, we now use sorted predicate logic. This enables us to offer the full seman-
tics of ORM models, including both static and dynamic rules, in one coherent frame-
work. 

The rest of this paper is structured as follows. Section 2 provides a simple example 
of how a graphical ORM model (with no dynamic rules) may be transformed into a 
logical theory. Section 3 shows how to formalize dynamic rules over updates to sin-
gle-valued roles in functional fact types. Section 4 extends this case to capture histo-
ry. Section 5 considers additions of instances to nonfunctional fact types. Section 6 
examines a more complex case involving derivation. Section 7 summarizes the main 
contributions, notes some further research options, and provides a list of cited refer-
ences for further reading. 
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2 Formalizing Basic ORM models as Logical Theories 

An ORM model includes both schema (structure) and population (instances). In [9], 
one of us provided a detailed algorithm for translating any ORM model into a set of 
formulae in unsorted predicate logic (with identity, and using mixfix predicates and 
numeric quantifiers). We now use basically the same approach, but employ sorted 
logic. While there is no space here to cover the full algorithm, we illustrate the basic 
approach with a simple example. 

The ORM model shown in Fig. 1 includes a schema with one elementary fact type 
Employee has Salary and a population of three fact instances. Fig. 1(a) is in compact 
form, abbreviating the reference schemes for Employee and Salary in parentheses. 
These reference schemes may be automatically expanded to the existential fact types 
shown in Fig. 1(b). In ORM 2, unit-based reference schemes (e.g. USD:) also involve 
a unit dimension (in this case, Money) but for simplicity we ignore this aspect here. 
 

 
 
 
 
 
 
 

Fig. 1. A simple ORM model in (a) compact and (b) expanded form 

The model may be formalized as indicated below. Object types are typed as entity 
types (solid line) or value types (broken line), and the top level entity types are de-
clared mutually exclusive. For simplicity, we omit classifications of value types here 
and relevant axioms for numeric operators. The predicates are then typed. Although 
our sorted logic notation uses short predicate names (e.g. “has”), different fact types 
are always distinguished by typing the object variables. If one wishes to avoid predi-
cates with different semantics being assigned the same short name (cf. Horse runs Race 
with Person runs Company), full fact type readings may be used instead to name the pre-
dicates. Type predicates are placed in prefix position; all other predicates are mixfix. 
 

Object Types: ∀x:Employee x is an entity; ∀x:Salary x is an entity  
∀x:EmployeeNr x is a value; ∀x:USDValue x is a value 
∀x:Employee ∀y:Salary x ≠ y 

 

Fact Types:    ∀x ∀y (x has y → [(Employee x & Salary y) ∨ (Employee x & EmployeeNr y) 
   ∨ (Salary x & USDValue y)] 

   ∀x:Employee ∀y:EmployeeNr (x has y ≡ y is of x) 
   ∀x:Salary ∀y:USDValue (x has y ≡ y is of x) 

 

Constraints: ∀x:Employee ∃0..1y:Salary x has y 
    ∀x:Employee ∃1y:EmployeeNr x has y 

∀x:EmployeeNr ∃0..1y:Employee x is of y    
∀x:Salary ∃1y:USDValue x has y; ∀x:USDValue ∃0..1y:Salary x is of y 
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Derivation rule for the snapshot fact type
is provided by the equality constraint
which may be formulated in attribute form thus:

* For each Employee,
salary = latestSalaryGrant.salary.

is latest for*

[latestSalaryGrant]

* SalaryGrant is latest for Employee iff
         SalaryGrant is to Employee and is at some Instant1
         and not exists some SalaryGrant2 that is to the same Employee and is at some Instant2 > Instant1.

updates*

[newGrant][oldGrant]

* SalaryGrant2 updates SalaryGrant1 iff
          SalaryGrant1 is to Employee1 and SalaryGrant2 is to Employee1

           and SalaryGrant1 is at Instant1 and SalaryGrant2 is at Instant2
           and not exists some SalaryGrant3 that is to Employee1 and is at Instant3

           and Instant3 > Instant1 and Instant3 < Instant2.

Population: ∃x:Employee ∃y:Salary ∃z:EmployeeNr ∃w:USDValue  
(x has y & x has z & y has w & z = 101 & w = 80000) 
etc. for the other 2 rows of data 

3 Updating Single-Valued Roles in a Functional Fact Types 

We now consider formalization of dynamic rules added to ORM models, starting with 
the case of updates to a functional (n:1 or 1:1) binary fact type. The dynamic con-
straint on the salary fact type in Fig. 1 requires that salaries of employees must not 
decrease. Using the syntax introduced in [1], where old and new to refer to situations 
immediately before and after the transition, this constraint may be stated textually as: 
For each Employee, new salary >= old salary. Here the context of the constraint is the object 
type Employee, and the elementary transaction updates the salary of the employee. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Logging semantics for update salary rule 

While the user schema is confined to Employee has Salary, for which only a current 
snapshot is required (no history), in the background we add fact types to maintain a 
log of salary grants, as shown in Fig. 2 (unshaded portion). The strict order on Instant 
enables us to define the notions of latest as well as updating of an old salary grant by 
a new one as shown. The employee-salary fact type is now derivable from the equali-
ty constraint, as shown. The dynamic constraint may now be reformulated as the fol-
lowing static constraint (no action is needed if the salary grant is the first for the em-
ployee): SalaryGrant2 updates SalaryGrant1 only if SalaryGrant2.salary >= SalaryGrant1.salary. 



The additional object types and fact types may be formalized as discussed in the 
previous section. The graphical constraints are also trivially formalized. For example, 
the external uniqueness constraint and the join equality constraint are expressible as: 

∀x:Instant ∀y:Employee ∃0..1z:SalaryGrant (z is at x & z is to y) 
∀x:Employee ∀y:Salary [x has y ≡ ∃z:SalaryGrant(z is latest for x & z is of y)] 

 

The derivation rules in Fig. 2 are expressed in FORML 2, our formal ORM 2 tex-
tual language that is a sugared version of our underlying logical syntax designed for 
consumption by nontechnical domain experts. Type names are used for sorted va-
riables, with subscripts added as needed to distinguish variables of the same type. 
Where not stated explicitly, head clause variables are implicitly universally quanti-
fied, and variables introduced in the body clause are existentially quantified (cf. Horn 
clauses). Functional style in dot notation may be used, using role names as function 
names. For example, the join equality constraint formulated above may be reformu-
lated in functional style as 

 

∀x:Employee x.salary=x.latestSalaryGrant.salary  
 

and then sugared to the FORML 2 rule: For each Employee, salary = latestSalaryGrant.salary. 
The other derivation rules in Fig. 2 are equivalent to the following: 
 

∀x:SalaryGrant ∀y: Employee [x is latest for y ≡ (x is to y & ∃z:Instant x is at z & 
 ~∃w:SalaryGrant ∃u:Instant (w is to y & u >z))] 

∀x,y:SalaryGrant [y updates x  ≡ (x.employee=y.employee & ~∃z:SalaryGrant 
 (z.employee=x.employee & y.instant>z.instant & z.instant>x.instant))]  

 

The key result is that the dynamic constraint For each Employee, new salary >= old salary 
may be recast as the following static constraint: 
 

∀x,y:SalaryGrant (y updates x →  y.salary >= x.salary) 
 
Generalizing from this example to any functional binary fact type of the form A R’s 

B, with B’s role name r (denoting the “attribute” of A being constrained), we obtain 
the dynamic constraint pattern For each A, new r Θ old r, where Θ denotes the required 
relationship between the values of r after and before the transition. Our logic specifi-
cations for the salary example may be easily adapted to cover this general pattern. 

This approach may be easily extended to formalize simple state transition rules 
such as the dynamic rule for marital status transitions shown in Fig. 3. As in the pre-
vious example, the presence of the new and/or old keywords signals that the prospec-
tive transaction is an update (rather than an addition or deletion). In this case, the log-
ging subschema (unshaded portion) is based on MaritalStatusAssignment. The 
formalization is similar to that in the previous example, allowing the dynamic rule to 
be reformulated as the following static rule. This example may be generalized to up-
dates of an enumerated role on a functional fact type A R’s B in an obvious way. 
 

∀x,y:MaritalStatusAssignment [y updates x  → ((x.maritalStatus =‘single’ & y. mari-
talStatus=’married’) ∨ (x. maritalStatus=’married’ & (y.maritalStatus=‘widowed’ ∨  
y.maritalStatus=‘divorced’) ∨ (x.maritalStatus=‘widowed’ & y.maritalStatus=‘married’) 
∨ (x.maritalStatus=’divorced’ & y.maritalStatus = ‘married’))]  
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Fig. 3. Updating the marital status of students 

4 Examples of Historical Facts  

We now extend the salary snapshot case considered earlier to the case where salary 
history is required in the user schema. The dynamic constraint is now specified using 
the keywords “added”, “previous” and “existing”, as shown in Fig. 4(a) (for simplicity, 
reference schemes are omitted). The added keyword indicates we are adding a fact 
rather than updating an existing fact. The “previous” function returns the previous sal-
ary (if it exists) of the employee, while the qualification “existing” applies the condi-
tion only if a previous salary for the employee does exist. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Salary example with history 

This dynamic rule syntax is much simpler than that used in [1], but still relies on a 
formal semantics being provided for the keywords. To address this need, we first ob-
jectify the ternary as SalaryGrant. In ORM 2, this is handled as situational nominali-
zation [12, sec. 10.5], with SalaryGrant in 1:1 correspondence with the ternary, as en-
forced by the join equality constraint in Fig. 4(b). The case may now be handled as in 
the earlier case, with Date replacing Instant. In effect, this case is simpler, because the 
logging data is already available from the application database. 



Seating
(.nr)

was allocated
Table
(.nr)

is vacant *

Instant
(dhms)

started at

ended at

[startTime]

[endTime]

* Table is vacant if and only if
      each Seating that was allocated that Table

ended at some Time.

Context: Seating was allocated Table
For each fact added
needed before: the table is vacant
after: the table is not vacant.

>

This example may be generalized to any historical fact type of the form R(A1.. An), 
where a uniqueness constraint spans n-1 roles, one of which is played by a temporal 
object type such as Date or Instant that is used to order the history. 

5 Adding Instances of a Nonfunctional Fact Type 

We now consider adding fact instances to a nonfunctional fact type (no single-role 
uniqueness constraint), such as the Seating was allocated Table association in Fig. 5, 
which shows a model fragment extracted from a restaurant application. A seating is 
the allocation of a party (of one or more customers) to one or more vacant tables. The 
asterisked rule is a derivation rule for the snapshot fact type Table is vacant.  

This model maintains a history of seatings (for each table we record all the seatings 
it was previously allocated to). The value-comparison constraint (circled “>” with 
dots) verbalizes as: For each Seating, existing endTime > startTime. To ensure that no seat-
ings that overlap in time occupy the same table, the dynamic rule in Fig. 5 declares 
that a table may be assigned to a seating only if it is vacant at that time. The context 
for the constraint is the fact type Seating was allocated Table, and the elementary transac-
tion involves the addition of an instance of this fact type. The reserved words before 
and after denote the states just before and after the transaction, needed indicates the 
precondition is necessary for the fact addition to take place (not just for this con-
straint), and the is scoped to the transaction instance.  

 
 
 
 
 
 
 
 
 

Fig. 5. Fragment of an ORM schema maintaining history of restaurant seatings 

One static alternative to the dynamic rule was presented in [1], but this expression 
is extremely complex. A simpler static constraint formulation is possible using our 
logging semantics approach. The unshaded portion of Fig. 6 introduces TableSeating 
in 1:1 correspondence with Seating was allocated to Table, using the derivation rules 
shown to determine its start and end times. The value comparison constraint For each 
TableSeating, existing endtime > startime is omitted since it is implied. The updates and lat-
est table seating predicates may be defined similarly to the previous examples, where 
one table seating updates another if and only if both seatings are for the same table 
and there is no intermediate seating for that table. Given the value comparison con-
straint, the dynamic rule to ensure no overlap may now be simply formulated as the 
following static constraint: 

 

∀x,y:TableSeating (y updates x → y.startTime > x.endTime) 
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Fig. 6. Adding the logging subschema for Fig. 5 

6 A More Complex Case Involving Derivation 

In [1], a more complex case dealt with account transactions. We have space here to 
consider only transfer transactions, a basic schema for which is shown in Fig. 7. 
Transfer transactions transfer funds from one account to another. We record historical 
information of all transactions, from which the current account balances may be de-
rived. We assume that an account exists prior to any transaction on it, and that on the 
event that an account is opened, its balance is set to zero. The following dynamic con-
straint may be specified on transfer transactions:  
 

Context: TransferTransaction 
For each instance added 
 newFromBalance = (old fromAccount.balance – amount) and  
 newToBalance = (old toAccount.balance + amount) and 

  new fromAccount.balance= newFromBalance and 
  new toAccount.balance = newToBalance 

 
 
 
 
 

 
 
 
 
 
 

Fig. 7.  An example involving historical and derived snapshot data 

 



As with normal banking operations, history is maintained for all transactions in the 
user database, so the data needed for our logging semantics are essentially already 
there. Similar techniques to those discussed earlier can be applied to replace the dy-
namic rule with a static constraint. 

7    Conclusion                                                                                            

This paper outlined an approach to provide a formal semantics for a proposed 
extension to Object-Role Modeling that supports declaration of dynamic rules. 
Dynamic rules differ from static rules by pertaining to properties of state transitions, 
rather than to the states themselves. We have restricted application of dynamic rules 
to so-called single-step transactions. Dynamic rules further specify an elementary 
transaction type by indicating which kind of object or fact (being added, deleted or 
updated) is actually allowed. Dynamic rules are equipped with preconditions relevant 
to the transaction, followed by a condition stating the properties of the new state, 
including the relation between the new state and the old state. 

We have provided such dynamic rules with a formal semantics based on sorted, 
first-order predicate logic. The key idea to our solution is the formalization of 
dynamic constraints as static constraints on the database transaction history. This 
logging semantics for dynamic rules makes explicit the log of all previous transaction 
instances pertaining to those specific rules. Snapshot data are maintained in the user 
database, whereas historical data are kept in the log database. This approach avoids 
the need to consider more complex logics such as temporal logics, while at the same 
time conforming in part to industrial database approaches that utilize log files to 
manage transactions. Future research options include extending this framework to 
cover other kinds of transactions (e.g. deletions) as well as dynamic rules involving 
more complex temporal expressions. 
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