
Formal Semantics of Dynamic Rules in ORM

Herman Balsters1, Terry Halpin2

1 University of Groningen, The Netherlands
e-mail: H.Balsters@rug.nl

2 Neumont University, Utah, USA.
e-mail: terry@neumont.edu

Abstract: This paper provides formal semantics for an extension of the Object-
Role Modeling approach that supports declaration of dynamic rules. Dynamic
rules differ from static rules by pertaining to properties of state transitions, ra-
ther than to the states themselves. In this paper we restrict application of dy-
namic rules to so-called single-step transactions, with an old state (the input of
the transaction) and a new state (the direct result of that transaction). These dy-
namic rules further specify an elementary transaction type by indicating which
kind of object or fact (being added, deleted or updated) is actually allowed. Dy-
namic rules may declare pre-conditions relevant to the transaction, and a condi-
tion stating the properties of the new state, including the relation between the
new state and the old state. In this paper we provide such dynamic rules with a
formal semantics based on sorted, first-order predicate logic. The key idea to
our solution is the formalization of dynamic constraints as static constraints on
the database transaction history.

1 Introduction

Object-Role Modeling (ORM) is a fact-oriented approach for modeling, transforming,
and querying information in terms of the underlying facts of interest, where facts and
rules are verbalized in language understandable by nontechnical users of the business
domain. In contrast to attribute-based modeling approaches such as Entity Relation-
ship (ER) modeling [5] and class diagramming in the Unified Modeling Language
(UML) [17], ORM models are attribute-free, treating all facts as relationships (unary,
binary, ternary etc.). For example, instead of the attributes Person.isSmoker and Per-
son.birthdate, ORM uses the fact types Person smokes and Person was born on Date.

Other fact-oriented approaches closely related to ORM include CogNIAM
(www.pna-group.com), Fully-Communication Oriented Information Modeling (FCO-
IM) [2], and the Semantics of Business Vocabulary and Business Rules (SBVR) [19]
specification recently approved by the Object Management Group. A basic introduc-
tion to ORM may be found in [11] and a thorough coverage in [12]. The version of
ORM discussed in this paper is ORM 2 [10], as supported by the NORMA tool [7].

Business rules include constraints and derivation rules. Static rules (also known as
state rules) apply to each state of the information system that models the business
domain, and may be checked by examining each state individually (e.g. each moon
orbits at most one planet). Dynamic rules reference at least two states, which may be

either successive (e.g. no employee may be demoted in rank—this kind of dynamic
rule is known as a transition constraint) or separated by some period (e.g. invoices
ought to be paid within 30 days of being issued). ORM is richer than ER or UML in
its ability to depict static constraints graphically, but unlike UML it currently has no
graphic notation (e.g. activity diagrams) to specify business processes. To capture dy-
namic rules, UML supplements its graphical notations with formulae in the Object
Constraint Language (OCL) [18, 24], but the OCL syntax is often too mathematical
for validation by nontechnical users.

Since the 1980s, many extensions to fact-oriented approaches have been proposed
to model temporal aspects and processes (e.g. [4, 8, 13, 14, 15, 21, 22]). For a brief
review of such work see [1], where we in conjunction with two colleagues introduced
to ORM a purely declarative means to formulate dynamic constraints on single-step
transactions, with an old state (the input of the transaction) and a new state (resulting
from that transaction). Such dynamic rules specify an elementary transaction type in-
dicating which kind of object or fact is being added, deleted or updated, and (option-
ally) pre-conditions relevant to the transaction, followed by a condition stating the
properties of the new state, including the relation between the new state and the old
state. These dynamic rules are formulated in a syntax designed to be easily validated
by nontechnical domain experts. In this paper, we focus on providing a formal seman-
tics for the basic rule patterns for dynamic rules found in [1]. Such a formalization
supports further understanding of dynamic rules, and also provides a step to further
tool support.

Substantial research has been carried out to provide logical formalizations of dy-
namic rules, typically using temporal logics (e.g. [9], ch. 8) or Event-Condition-
Action (ECA) formalisms (e.g. de Brock [3], Lipeck [16], Chomicki [6], Paton &
Díaz [20], Snodgrass[23]). Our approach differs from previous work by treating a dy-
namic rule as a special kind of static rule on the transaction history. We define the
semantics of a dynamic rule by making explicit the log of all previous transaction in-
stances pertaining to that specific rule. Snapshot data are maintained in the user data-
base, whereas historical data are kept in the log database. This logging semantics al-
lows us to formalize dynamic constraints in a static way, using first-order predicate
logic. ORM model fragments associated with dynamic rules may also be fully forma-
lized in this way, as first described in [9] using unsorted predicate logic; for ease of
readability, we now use sorted predicate logic. This enables us to offer the full seman-
tics of ORM models, including both static and dynamic rules, in one coherent frame-
work.

The rest of this paper is structured as follows. Section 2 provides a simple example
of how a graphical ORM model (with no dynamic rules) may be transformed into a
logical theory. Section 3 shows how to formalize dynamic rules over updates to sin-
gle-valued roles in functional fact types. Section 4 extends this case to capture histo-
ry. Section 5 considers additions of instances to nonfunctional fact types. Section 6
examines a more complex case involving derivation. Section 7 summarizes the main
contributions, notes some further research options, and provides a list of cited refer-
ences for further reading.

Employee
(.nr)

has
Salary
(USD:)

101 80000
102 80000
103 95000

Employee

has

Salary

101 80000
102 80000
103 95000

EmployeeNr

(a) (b)

USDValue

has
/is of

has
/is of

2 Formalizing Basic ORM models as Logical Theories

An ORM model includes both schema (structure) and population (instances). In [9],
one of us provided a detailed algorithm for translating any ORM model into a set of
formulae in unsorted predicate logic (with identity, and using mixfix predicates and
numeric quantifiers). We now use basically the same approach, but employ sorted
logic. While there is no space here to cover the full algorithm, we illustrate the basic
approach with a simple example.

The ORM model shown in Fig. 1 includes a schema with one elementary fact type
Employee has Salary and a population of three fact instances. Fig. 1(a) is in compact
form, abbreviating the reference schemes for Employee and Salary in parentheses.
These reference schemes may be automatically expanded to the existential fact types
shown in Fig. 1(b). In ORM 2, unit-based reference schemes (e.g. USD:) also involve
a unit dimension (in this case, Money) but for simplicity we ignore this aspect here.

Fig. 1. A simple ORM model in (a) compact and (b) expanded form

The model may be formalized as indicated below. Object types are typed as entity
types (solid line) or value types (broken line), and the top level entity types are de-
clared mutually exclusive. For simplicity, we omit classifications of value types here
and relevant axioms for numeric operators. The predicates are then typed. Although
our sorted logic notation uses short predicate names (e.g. “has”), different fact types
are always distinguished by typing the object variables. If one wishes to avoid predi-
cates with different semantics being assigned the same short name (cf. Horse runs Race
with Person runs Company), full fact type readings may be used instead to name the pre-
dicates. Type predicates are placed in prefix position; all other predicates are mixfix.

Object Types: ∀x:Employee x is an entity; ∀x:Salary x is an entity
∀x:EmployeeNr x is a value; ∀x:USDValue x is a value
∀x:Employee ∀y:Salary x ≠ y

Fact Types: ∀x ∀y (x has y → [(Employee x & Salary y) ∨ (Employee x & EmployeeNr y)
 ∨ (Salary x & USDValue y)]

 ∀x:Employee ∀y:EmployeeNr (x has y ≡ y is of x)
 ∀x:Salary ∀y:USDValue (x has y ≡ y is of x)

Constraints: ∀x:Employee ∃0..1y:Salary x has y
 ∀x:Employee ∃1y:EmployeeNr x has y

∀x:EmployeeNr ∃0..1y:Employee x is of y
∀x:Salary ∃1y:USDValue x has y; ∀x:USDValue ∃0..1y:Salary x is of y

Salary
(USD:)

Employee
(.nr)

SalaryGrant

is of

is to / has

is at
Instant
(dhm)

has*

Derivation rule for the snapshot fact type
is provided by the equality constraint
which may be formulated in attribute form thus:

* For each Employee,
salary = latestSalaryGrant.salary.

is latest for*

[latestSalaryGrant]

* SalaryGrant is latest for Employee iff
 SalaryGrant is to Employee and is at some Instant1
 and not exists some SalaryGrant2 that is to the same Employee and is at some Instant2 > Instant1.

updates*

[newGrant][oldGrant]

* SalaryGrant2 updates SalaryGrant1 iff
 SalaryGrant1 is to Employee1 and SalaryGrant2 is to Employee1

 and SalaryGrant1 is at Instant1 and SalaryGrant2 is at Instant2
 and not exists some SalaryGrant3 that is to Employee1 and is at Instant3

 and Instant3 > Instant1 and Instant3 < Instant2.

Population: ∃x:Employee ∃y:Salary ∃z:EmployeeNr ∃w:USDValue
(x has y & x has z & y has w & z = 101 & w = 80000)
etc. for the other 2 rows of data

3 Updating Single-Valued Roles in a Functional Fact Types

We now consider formalization of dynamic rules added to ORM models, starting with
the case of updates to a functional (n:1 or 1:1) binary fact type. The dynamic con-
straint on the salary fact type in Fig. 1 requires that salaries of employees must not
decrease. Using the syntax introduced in [1], where old and new to refer to situations
immediately before and after the transition, this constraint may be stated textually as:
For each Employee, new salary >= old salary. Here the context of the constraint is the object
type Employee, and the elementary transaction updates the salary of the employee.

Fig. 2. Logging semantics for update salary rule

While the user schema is confined to Employee has Salary, for which only a current
snapshot is required (no history), in the background we add fact types to maintain a
log of salary grants, as shown in Fig. 2 (unshaded portion). The strict order on Instant
enables us to define the notions of latest as well as updating of an old salary grant by
a new one as shown. The employee-salary fact type is now derivable from the equali-
ty constraint, as shown. The dynamic constraint may now be reformulated as the fol-
lowing static constraint (no action is needed if the salary grant is the first for the em-
ployee): SalaryGrant2 updates SalaryGrant1 only if SalaryGrant2.salary >= SalaryGrant1.salary.

The additional object types and fact types may be formalized as discussed in the
previous section. The graphical constraints are also trivially formalized. For example,
the external uniqueness constraint and the join equality constraint are expressible as:

∀x:Instant ∀y:Employee ∃0..1z:SalaryGrant (z is at x & z is to y)
∀x:Employee ∀y:Salary [x has y ≡ ∃z:SalaryGrant(z is latest for x & z is of y)]

The derivation rules in Fig. 2 are expressed in FORML 2, our formal ORM 2 tex-
tual language that is a sugared version of our underlying logical syntax designed for
consumption by nontechnical domain experts. Type names are used for sorted va-
riables, with subscripts added as needed to distinguish variables of the same type.
Where not stated explicitly, head clause variables are implicitly universally quanti-
fied, and variables introduced in the body clause are existentially quantified (cf. Horn
clauses). Functional style in dot notation may be used, using role names as function
names. For example, the join equality constraint formulated above may be reformu-
lated in functional style as

∀x:Employee x.salary=x.latestSalaryGrant.salary

and then sugared to the FORML 2 rule: For each Employee, salary = latestSalaryGrant.salary.
The other derivation rules in Fig. 2 are equivalent to the following:

∀x:SalaryGrant ∀y: Employee [x is latest for y ≡ (x is to y & ∃z:Instant x is at z &
 ~∃w:SalaryGrant ∃u:Instant (w is to y & u >z))]

∀x,y:SalaryGrant [y updates x ≡ (x.employee=y.employee & ~∃z:SalaryGrant
 (z.employee=x.employee & y.instant>z.instant & z.instant>x.instant))]

The key result is that the dynamic constraint For each Employee, new salary >= old salary
may be recast as the following static constraint:

∀x,y:SalaryGrant (y updates x → y.salary >= x.salary)

Generalizing from this example to any functional binary fact type of the form A R’s

B, with B’s role name r (denoting the “attribute” of A being constrained), we obtain
the dynamic constraint pattern For each A, new r Θ old r, where Θ denotes the required
relationship between the values of r after and before the transition. Our logic specifi-
cations for the salary example may be easily adapted to cover this general pattern.

This approach may be easily extended to formalize simple state transition rules
such as the dynamic rule for marital status transitions shown in Fig. 3. As in the pre-
vious example, the presence of the new and/or old keywords signals that the prospec-
tive transaction is an update (rather than an addition or deletion). In this case, the log-
ging subschema (unshaded portion) is based on MaritalStatusAssignment. The
formalization is similar to that in the previous example, allowing the dynamic rule to
be reformulated as the following static rule. This example may be generalized to up-
dates of an enumerated role on a functional fact type A R’s B in an obvious way.

∀x,y:MaritalStatusAssignment [y updates x → ((x.maritalStatus =‘single’ & y. mari-
talStatus=’married’) ∨ (x. maritalStatus=’married’ & (y.maritalStatus=‘widowed’ ∨
y.maritalStatus=‘divorced’) ∨ (x.maritalStatus=‘widowed’ & y.maritalStatus=‘married’)
∨ (x.maritalStatus=’divorced’ & y.maritalStatus = ‘married’))]

MaritalStatus
(.name)

Student
(.nr)

MaritalStatusAssignment

is of

is to / has

is at
Instant
(dhm)

has*

is latest for*

[latestMaritalStatusAssignment]

updates*

{‘single’, ‘married’,
 ‘widowed’, ‘divorced’}

For each Student,
in case old maritalStatus =

‘single’: new maritalStatus = ‘married’
‘married’: new maritalStatus in (‘widowed’, ‘divorced’)
‘widowed’: new maritalStatus = ‘married’
‘divorced’: new maritalStatus = ‘married’

end cases

Employee

Salary

… was granted … on ...

Date

For each Employee,
 added salary >= previous existing salary.

Employee

Salary

… was granted … on ...

Date

SalaryGrant

updates*

is to is of is on

(a) (b)

Fig. 3. Updating the marital status of students

4 Examples of Historical Facts

We now extend the salary snapshot case considered earlier to the case where salary
history is required in the user schema. The dynamic constraint is now specified using
the keywords “added”, “previous” and “existing”, as shown in Fig. 4(a) (for simplicity,
reference schemes are omitted). The added keyword indicates we are adding a fact
rather than updating an existing fact. The “previous” function returns the previous sal-
ary (if it exists) of the employee, while the qualification “existing” applies the condi-
tion only if a previous salary for the employee does exist.

Fig. 4. Salary example with history

This dynamic rule syntax is much simpler than that used in [1], but still relies on a
formal semantics being provided for the keywords. To address this need, we first ob-
jectify the ternary as SalaryGrant. In ORM 2, this is handled as situational nominali-
zation [12, sec. 10.5], with SalaryGrant in 1:1 correspondence with the ternary, as en-
forced by the join equality constraint in Fig. 4(b). The case may now be handled as in
the earlier case, with Date replacing Instant. In effect, this case is simpler, because the
logging data is already available from the application database.

Seating
(.nr)

was allocated
Table
(.nr)

is vacant *

Instant
(dhms)

started at

ended at

[startTime]

[endTime]

* Table is vacant if and only if
 each Seating that was allocated that Table

ended at some Time.

Context: Seating was allocated Table
For each fact added
needed before: the table is vacant
after: the table is not vacant.

>

This example may be generalized to any historical fact type of the form R(A1.. An),
where a uniqueness constraint spans n-1 roles, one of which is played by a temporal
object type such as Date or Instant that is used to order the history.

5 Adding Instances of a Nonfunctional Fact Type

We now consider adding fact instances to a nonfunctional fact type (no single-role
uniqueness constraint), such as the Seating was allocated Table association in Fig. 5,
which shows a model fragment extracted from a restaurant application. A seating is
the allocation of a party (of one or more customers) to one or more vacant tables. The
asterisked rule is a derivation rule for the snapshot fact type Table is vacant.

This model maintains a history of seatings (for each table we record all the seatings
it was previously allocated to). The value-comparison constraint (circled “>” with
dots) verbalizes as: For each Seating, existing endTime > startTime. To ensure that no seat-
ings that overlap in time occupy the same table, the dynamic rule in Fig. 5 declares
that a table may be assigned to a seating only if it is vacant at that time. The context
for the constraint is the fact type Seating was allocated Table, and the elementary transac-
tion involves the addition of an instance of this fact type. The reserved words before
and after denote the states just before and after the transaction, needed indicates the
precondition is necessary for the fact addition to take place (not just for this con-
straint), and the is scoped to the transaction instance.

Fig. 5. Fragment of an ORM schema maintaining history of restaurant seatings

One static alternative to the dynamic rule was presented in [1], but this expression
is extremely complex. A simpler static constraint formulation is possible using our
logging semantics approach. The unshaded portion of Fig. 6 introduces TableSeating
in 1:1 correspondence with Seating was allocated to Table, using the derivation rules
shown to determine its start and end times. The value comparison constraint For each
TableSeating, existing endtime > startime is omitted since it is implied. The updates and lat-
est table seating predicates may be defined similarly to the previous examples, where
one table seating updates another if and only if both seatings are for the same table
and there is no intermediate seating for that table. Given the value comparison con-
straint, the dynamic rule to ensure no overlap may now be simply formulated as the
following static constraint:

∀x,y:TableSeating (y updates x → y.startTime > x.endTime)

Account
(.nr)

Transfer
Transaction

(.nr)

MoneyAmount
(USD:)

involves

updates fromAccount to**

is from

[newFromBalance]

[amount]

has**
Balance
(USD:)

updates toAccount to**
[newToBalance]

is to

[fromAccount]

[toAccount]

occurred at
Instant
(dhms)

Seating
(.nr)

Table
(.nr)

TableSeating

is in

is for

ended at*
Instant
(dhms)

was
allocatedis latest for*

updates*

starts at ends at

[startTime]

[startTime] [endTime]

* For each TableSeating,
startTime = seating.startTime.

* For each TableSeating,
endTime = seating.endTime.

>

started at*

[endTime]

Fig. 6. Adding the logging subschema for Fig. 5

6 A More Complex Case Involving Derivation

In [1], a more complex case dealt with account transactions. We have space here to
consider only transfer transactions, a basic schema for which is shown in Fig. 7.
Transfer transactions transfer funds from one account to another. We record historical
information of all transactions, from which the current account balances may be de-
rived. We assume that an account exists prior to any transaction on it, and that on the
event that an account is opened, its balance is set to zero. The following dynamic con-
straint may be specified on transfer transactions:

Context: TransferTransaction
For each instance added
 newFromBalance = (old fromAccount.balance – amount) and
 newToBalance = (old toAccount.balance + amount) and

 new fromAccount.balance= newFromBalance and
 new toAccount.balance = newToBalance

Fig. 7. An example involving historical and derived snapshot data

As with normal banking operations, history is maintained for all transactions in the
user database, so the data needed for our logging semantics are essentially already
there. Similar techniques to those discussed earlier can be applied to replace the dy-
namic rule with a static constraint.

7 Conclusion

This paper outlined an approach to provide a formal semantics for a proposed
extension to Object-Role Modeling that supports declaration of dynamic rules.
Dynamic rules differ from static rules by pertaining to properties of state transitions,
rather than to the states themselves. We have restricted application of dynamic rules
to so-called single-step transactions. Dynamic rules further specify an elementary
transaction type by indicating which kind of object or fact (being added, deleted or
updated) is actually allowed. Dynamic rules are equipped with preconditions relevant
to the transaction, followed by a condition stating the properties of the new state,
including the relation between the new state and the old state.

We have provided such dynamic rules with a formal semantics based on sorted,
first-order predicate logic. The key idea to our solution is the formalization of
dynamic constraints as static constraints on the database transaction history. This
logging semantics for dynamic rules makes explicit the log of all previous transaction
instances pertaining to those specific rules. Snapshot data are maintained in the user
database, whereas historical data are kept in the log database. This approach avoids
the need to consider more complex logics such as temporal logics, while at the same
time conforming in part to industrial database approaches that utilize log files to
manage transactions. Future research options include extending this framework to
cover other kinds of transactions (e.g. deletions) as well as dynamic rules involving
more complex temporal expressions.

References

1. Balsters, H., Carver, A., Halpin, T., Morgan, T. 2006, Modeling Dynamic Rules in ORM,

On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, eds R. Meers-
man, Z. Tari, P. Herrero et al., Montpellier. Springer LNCS 4278, 1201-1210.

2. Bakema, G., Zwart, J. & van der Lek, H. 2000, Fully Communication Oriented Informa-
tion Modelling, Ten Hagen Stam, The Netherlands.

3. de Brock, E. O. 2000, ‘A General Treatment of Dynamic Integrity Constraints’. Data and
Knowledge Engineering, 32(3): 223-246.

4. Bruza, P. D. & van der Weide, Th. P 1989, ‘The Semantics of TRIDL’, Technical Report
89-17, Department of Information Systems, University of Nijmegen.

5. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM
Transactions on Database Systems, 1(1), pp. 9−36.

6. Chomicki, J. 1992, ‘History-less Checking of Dynamic Integrity Constraints’, ICDE 1992:
557-64.

7. Curland, M. & Halpin, T. 2007, ‘Model Driven Development with NORMA’, Proc. 40th
Int. Conf. on System Sciences (HICSS-40), IEEE Computer Society, January 2007.

8. Falkenberg, E. D. & van der Weide, Th. P. 1988, ‘Formal Description of the TOP Model’.
Technical Report 88-01, Department of Information Systems, University of Nijmegen.

9. Girle, R. 2003, Possible Worlds, McGill-Queen’s University Press, Montreal.
10. Halpin, T. 1989, ‘A Logical Analysis of Information Systems: static aspects of the data-

oriented perspective’, doctoral dissertation, University of Queensland. Available online at
http://www.orm.net/Halpin_PhDthesis.pdf.

11. Halpin, T. 2005, ‘ORM 2’, On the Move to Meaningful Internet Systems 2005: OTM 2005
Workshops, eds R. Meersman, Z. Tari, P. Herrero et al., Cyprus. Springer LNCS 3762, pp
676-87.

12. Halpin, T. 2006, ‘ORM/NIAM Object-Role Modeling’, Handbook on Information Systems
Architectures, 2nd edition, eds P. Bernus, K. Mertins & G. Schmidt, Springer, Heidelberg,
pp. 81-103.

13. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second
Edition, Morgan Kaufmann, San Francisco.

14. Halpin, T. & Wagner, G. 2003, ‘Modeling Reactive Behavior in ORM’. Conceptual Mod-
eling – ER2003, Proc. 22nd ER Conference, Chicago, October 2003, Springer LNCS.

15. ter Hofstede, A. H. M. 1993, ‘Information Modelling in Data Intensive Domains’, PhD
thesis, University of Nijmegen.

16. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, ‘Formal definition of
a conceptual language for the description and manipulation of information models’, In-
formation Systems, vol. 18, no. 7, pp. 489-523.

17. Lipeck, U. W. 1990, ‘Transformation of Dynamic Integrity Constraints into Transaction
Specifications’, Theor. Comput. Sci. 76(1): 115-142.

18. Object Management Group 2003, UML 2.0 Superstructure Specification. Online at:
www.omg.org/uml.

19. Object Management Group 2005, UML OCL 2.0 Specification. Online at:
http://www.omg.org/docs/ptc/05-06-06.pdf.

20. Object Management Group 2007, Semantics of Business Vocabulary and Business Rules
(SBVR) Specification. Online at: http://omg.org/technology/documents/ bms_spec_catalog
.htm#SBVR.

21. Paton, N. W. & Díaz, O. 1999, ‘Active Database Systems’, ACM Computing Surveys,
31(1): 63-103.

22. Proper, H. A. 1994, ‘A Theory for Conceptual Modeling of Evolving Application Do-
mains’, PhD thesis, University of Nijmegen.

23. Proper, H. A., Hoppenbrouwers, S. J. B. A., & Weide, th. P. van der 2005, ‘A Fact-
Oriented Approach to Activity Modeling’, On the Move to Meaningful Internet Systems
2005: OTM 2005 Workshops, eds R. Meersman, Z. Tari, P. Herrero et al., Cyprus. Sprin-
ger LNCS 3762, pp 666-75.

24. Snodgrass, R.T. 1994, ‘TSQL2Language specification’, SIGMOD Record 23(1), 65-86.
25. Warmer, J. & Kleppe, A. 2003, The Object Constraint Language, Second Edition, Addi-

son-Wesley.

