
ConQuer: A Conceptual Query Language
A. C. Bloesch and T. A. Halpin

Bloesch, A.C. & Halpin, T.A. 1996, ‘ConQuer: a conceptual query language’, Proc. ER’96: 15th Int. Conf. on
conceptual modeling, Springer LNCS, no. 1157, pp. 121-33. Reprinted by permission.

Relational query languages such as SQL and QBE are less than ideal for end user queries
since they require users to work explicitly with structures at the relational level, rather
than at the conceptual level where they naturally communicate. ConQuer is a new
conceptual query language that allows users to formulate queries naturally in terms of
elementary relationships, and operators such as “and”, “not” and “maybe”, thus
avoiding the need to deal explicitly with implementation details such as relational tables,
null values, and outer joins. While most conceptual query languages are based on the
Entity-Relationship approach, ConQuer is based on Object Role Modeling (ORM), which
exposes semantic domains as conceptual object types, thus allowing queries to be
formulated in terms of paths through the information space. This paper provides an
overview of the ConQuer language.

Introduction

It is now widely recognized that information systems are best designed first at the
conceptual level, before mapping them to an implementation target such as a relational
database. A conceptual schema expresses an application model in terms of concepts
familiar to end users of the application, thus facilitating communication between
modeler and subject matter experts when determining the schema. Once declared, a
conceptual schema can be mapped in an automatic way to a variety of DBMS structures.
Although use of CASE tools for conceptual modeling and mapping is widespread, very
little use is currently made of tools for querying the conceptual model directly. Instead,
queries are typically formulated either at the external level using forms, or at the logical
level using a language such as SQL or QBE.

Form-based queries are typically very limited in expressibility, and can rapidly
become obsolete as the external interface evolves. SQL queries, and to a lesser extent
QBE queries, can be more expressive, but quickly become too complex for the average
end user to formulate once non-trivial queries are considered. Even queries that are
trivial to express in natural language (e.g. who does not drive more than one car?) can be
difficult for non technical users to express in these languages. Moreover, an SQL or QBE
query often needs to be changed if the relevant part of the conceptual schema or internal
schema is changed, even if the conceptual version of the query still applies. Finally,
commercial query optimizers for relational languages basically ignore the further
semantic optimization opportunities arising from knowledge of conceptual constraints.

ConQuer: A Conceptual Query Language 2

Query languages for object-oriented DBMSs suffer the same problems, and languages for
pre-relational systems are even lower-level.

For such reasons, considerable research has been undertaken to provide a conceptual
query language that enables users to formulate queries directly on the conceptual schema
itself. For example, the SUPER project [1] has a graphical conceptual query language
based on ERC+ (a variant of Entity Relationship (ER) modeling) [14]. Essentially, users
copy the relevant portions of a conceptual schema into the SUPER query editor. They
may then add further conditions to the query in a first-order like language. The principal
advantage of the SUPER query editor is that essentially the same graphical language is
used to both model and query a database. Unfortunately, the query language would be
hard to grasp, for naïve users, without significant training.

SUPER’s query editor keeps the schema browser separate from the query editor. By
contrast the Hybris project [16] integrates the query editor and schema browser. Hybris’s
approach reduces the user’s cognitive load but at the cost of reducing the expressivity of
the query language.

ERQL [11] is a conceptual query language for an EER (extended ER) conceptual
modeling language. It differs from Super and Hybris’s query language in that it is
textual. Essentially, ERQL is an SQL-like language modified to support EER. ERQL has
the advantage over SQL in that relational details are hidden from the user.

Not all conceptual query languages are based on ER. ConceptBase models a
deductive object database with a semantic net like modeling language Telos [13]. CBQL
is a first-order like query language where users specify the attributes they wish to know
and then constrain the result set with logical constraints. Like ERQL, ConceptBase’s [10]
query language CBQL [17] is textual. Unlike many conceptual query languages, CBQL
supports the useful notion of parameterized queries. But once again, the language would
be hard to grasp for naïve users.

Object Role Modeling (ORM) is a generic term for a conceptual modeling approach
which pictures the application world in terms of objects that play roles (individually or
in relationships), thus avoiding the notion of attribute. It originated as a semantic
modeling approach in the 1970s and has a number of closely related versions (e.g. NIAM
[18], FORM [5], NORM [4] and PSM [9]). ORM facilitates detailed information modeling
since it is linguistically based, is semantically rich and its notations are easily populated.
An overview of ORM may be found in [6], a detailed treatment in [5] and formal
discussions in [7; 8].

The use of ORM for conceptual and relational database design is becoming more
popular, partly because of the spread of ORM-based CASE tools, such as Asymetrix’s
InfoModeler. However, as with ER, the use of ORM for conceptual queries is still in its
infancy. The first ORM-based query language was RIDL [12], a hybrid language that
combined both declarative and procedural aspects. Although RIDL is very powerful, its
advanced features are not easy to master, and while the modeling component of RIDL
was implemented in the RIDL* tool, the query component was not supported. Another
ORM query language is LISA-D [9], which is based on PSM and has recently been
extended to Elisa-D [15] to include temporal and evolutionary support. LISA-D is very

ConQuer: A Conceptual Query Language 3

expressive but it is technically challenging for end users, and is currently supported only
as an academic prototype.

Since InfoAssistant is a commercial product, more care has been taken with its user
interface than would be normal in a research tool. As well as complying with Microsoft’s
user interface standards, InfoAssistant provides an intuitive interface for constructing
queries that has met with positive industry reviews and user feedback. Typical queries
can be constructed by just clicking on objects with the mouse. User interface deficiencies
in the current version have been identified and will be corrected in the next version. For
example, it is planned to make queries appear more like English sentences and provide
support for unlimited undo/redo.

The rest of this paper provides an overview of ConQuer (CONceptual QUERy), a
new ORM conceptual query language designed for ease of use, an early version of which
has been released in the InfoAssistant product from Asymetrix (see Figure 1). The next
section explains how the language is based on ORM, and illustrates how queries are
formulated and mapped to SQL. The following section discusses the formal semantics.
The conclusion summarizes the main contributions and outlines future research.

Figure 1: Screen snapshot of InfoAssistant's query editor.

ConQuer: A Conceptual Query Language 4

ORM-based Conceptual Queries

Figure 2 is a simple ORM schema. Object types are shown as named ellipses. Entity types
have solid ellipses with their simple reference schemes abbreviated in parenthesis (these
references are unabbreviated in queries). For example, “Employee (nr)” abbreviates
“Employee is identified by EmployeeNr”.

Employee
(nr)

Car
(regnr)

was born in /is birthplace of

Country
(name)

drives /is driven by

CarModel
(name)

is of /includes

developed /was developed by

Branch
(nr)

City

Language
(name)

speaks /is spoken by

PhoneNr
Salary
($)+

Statecode

Cityname State

Color
(name)has

earns /is earned by

has

heads
/is

headed
 by

works
for
/employs

lives in

is located in /is location of

has
is
in

u

is
in

u

has

Employee
Name

has

Figure 2: An ORM conceptual schema

If an entity type has a compound reference scheme, this is shown explicitly using an
external uniqueness constraint (circled “u”). For example, a state is identified by
combining its country with its statecode (e.g. Washington state is in the country named
“United Sates of America” and has the statecode “WA”, whereas Western Australia is in
the country named “Australia” and has the statecode “WA”). Value types have dotted
ellipses (e.g. “Statecode”). For simplicity we assume that cities may be identified by
combining their name and state (apologies to inhabitants of Stockbridge Massachusetts
USA).

ConQuer: A Conceptual Query Language 5

Predicates are shown as named role sequences, where each role is depicted as a box.
In the example all the predicates are binary (two roles). In the ORM version on which
ConQuer is based, predicates may have any arity (number of roles) and may be written
in mixfix form. A relationship type not used for reference is a fact type. An n-ary
relationship type has n! readings but only n are needed to guarantee access from any
object type. Figure 2 shows forward and inverse readings (separated by “/”) for several
binaries.

An arrow-tipped bar across a role sequence depicts an internal uniqueness
constraint. For example, each employee earns at most one salary, but an employee may
speak many languages and vice versa. A black dot connecting a role to an object type
indicates that the role is mandatory (i.e. each object in the database population of that
object type must play that role). The dotted arrow from the heads predicate to the works-
for predicate is a pair-subset constraint (each employee who heads a branch also works
for that branch). ORM has many other kinds of constraint, but these are not germane to
our discussion.

Notice that no use is made of attributes. This helps with natural verbalization,
simplifies the framework, and avoids arbitrary or temporary decisions about whether
some feature should be modeled as an attribute. Moreover, since ORM conceptual object
types are semantic domains, they act as semantic “glue” to connect the schema. This
facilitates not only strong typing but also query navigation through the information
space. We give an example later. When desired, attributes (e.g. birthplace) can be
introduced as derived concepts, based on roles in the underlying ORM schema.

An Informal Discussion of ConQuer
ConQuer queries may be represented as outline queries, schema trees or text. Currently
the InfoAssistant tool requires ConQuer queries to be entered in outline form, and
automatically generates a textual verbalization. In this paper we discuss only the outline
form, including some minor changes to the current version of the tool.

On opening a model for browsing, the user is presented with an object pick list.
When an object type is dragged to the query pane, another pane displays the roles played
by that object in the model. The user drags over those relationships of interest.
Highlighting an object type within one of these relationships causes its roles to be
displayed, and the user may drag over those of interest, and so on. In this way, a user
may quickly declare a query path through the information space, without any prior
knowledge of the underlying data structures.

Items to be displayed are indicated with a tick “þ”: these ticks may be toggled
on/off as desired. The query path may be restricted in various ways by use of operators
and conditions. As a simple example, consider the query: Who lives in the city in which
branch 10 is located? This may be set out as the following ConQuer outline:

Q1 þEmployee
+-- lives in City

 +-- is location of Branch 10

ConQuer: A Conceptual Query Language 6

This implicit form of the query may be expanded to reveal the reference schemes
(e.g. EmployeeNr, BranchNr). Its verbalized form is: “List the employeenr of each
employee who lives in the city that is location of a branch that is identified by branch nr
10”. Notice how City is used as a join object type for this query. If attributes were used
instead, one would typically have to formulate this is a more cumbersome way. For
example, if composite attributes are allowed we might use: List Employee. employeenr
where Employee.city = Branch.city and Branch.branchnr = 10. If not, we might resort to:
List Employee.employeenr where Employee.cityname = Branch.cityname and
Employee.statecode = Branch.statecode and Employee.country = Branch.country and
Branch.branchnr = 10.

Avoidance of attributes also helps to lengthen the usable lifetime of a conceptual
query. For example, suppose that after storing the previous query, we change the schema
to allow an employee to live in more than one city (e.g. a contractor might live in two
cities). The uniqueness constraint on Employee lives in City is now weakened, so that this
fact type is now many:many. With most versions of ER, this would mean the fact can no
longer be modeled as an attribute of Employee.

Moreover, suppose that we now decide to record the population of cities. In ER or
OO this would require that City be remodeled as an entity type instead of as an attribute.
Hence an ER or OO based query would need to be reformulated. With ORM based
queries however, the original query can still be used, since changing a constraint or
adding a new fact type has no impact on it. Of course, the SQL generated by the ORM
query may well differ with the new schema, but the meaning of the query is unchanged.

The previous query formed a linear path. Tree-shaped queries may be formulated by
use of the logical operators “and” and “or”. When two or more predicates stem from the
same object type occurrence, an “and” operator is implicitly assumed. For example,
consider the query: List the employee number and salary of each employee who has a
salary above $90000 and either speaks more than one language or drives a red car. This
may be set out as Q2. Notice also the simple treatment of functions, which often prove
difficult in SQL [2].

Q2 þEmployee
+-- has þSalary > 90000
+-- either speaks count (Language) > 1

 ¦
or-- drives Car

 +-- has Color ‘red’

Unless qualified by a “not” or “maybe”, predicates are interpreted in the normal,
positive sense. For example, the following query asks: “Who has a phone and drives a
car?”

Q3 þEmployee
+-- has PhoneNr
+-- drives Car

ConQuer: A Conceptual Query Language 7

On our ORM schema it is optional for an employee to have a phone or to drive a car.
To issue queries on optional roles in a relational language like SQL, we need to know
where the facts are stored and to cater for null values. Neither of these needs has
anything to do with conceptualizing the query. Null values and relational outer joins can
prove very confusing for SQL users [3]. One of the benefits of ORM is that all its base fact
types are elementary, and hence cannot have null values at all.

If we wish to exclude employees who play a given role, we add the “not” operator to
that role. If we don’t care whether they play a given role, we add the “maybe” operator
to that role. For example, query Q4 asks “Who does not have a phone and does not drive
a car?”.

Q4 þEmployee
+-- not has PhoneNr
+-- not drives Car

and query Q5 asks: List the employee number, employee name, phone (if any) and cars
(if any) of each employee.

Q5 þEmployee
+-- has þEmployeeName
+-- maybe has þPhoneNr
+-- maybe drives þCar

As the next section shows, the SQL code generated for the these two “maybe”s
differs since the underlying uniqueness constraints are different for each predicate, so the
relational columns appear in different tables. Conceptually however, the user should not
have to be concerned with these issues.

ConQuer is capable of far more complex queries than cited here. However in this
paper we are more concerned with a clear exposition of our basic approach and its
rationale rather than with providing a complete coverage of the language.

Mapping to SQL
Using the Rmap algorithm [5], our conceptual schema maps to the relational schema
shown in Figure 3 (domains are omitted). Keys are underlined, using a double underline
for the primary key where more than one key exists. Optional columns are shown in
square brackets (as in BNF). Subset constraints (e.g. foreign key constraints) are shown as
dotted arrows.

ConQuer: A Conceptual Query Language 8

Figure 1: The relational schema mapped from the ORM conceptual schema in Figure 2.

InfoAssistant maps ConQuer queries to SQL for a variety of DBMSs, in the process
performing semantic optimization where possible by accessing the constraints in the
ORM schema. The SQL code for the earlier queries is shown below, S1 being the SQL for
query Q1, and so on. A comparison with the ConQuer queries highlights the difference
between the relational and the conceptual levels:

S1 select X1.empnr
from Employee as X1, Branch as X2
where X1.cityname = X2.cityname and X1.statecode = X2.statecode

and X1.country = X2.country
and X2.branchnr = 10

S2 select X1.empnr, X1.salary
from Employee as X1, Drives as X2, Car as X3
where X1.salary > 90000

and (X1.empnr in
(select empnr from Speaks
 group by empnr
 having count(*) > 1)

or (X1.empnr = X2.empnr and X2.carregnr = X3.carregnr
 and color = ‘red’))

S3 select X1.empnr
from Employee as X1, Drives as X2
where X1.empnr = x2.empnr

and X1.phone is not null

Branch (headempnr , branchnr, cityname, statecode, country)

Employee (empnr, empname, branchnr, salary, cityname, statecode, country, [phone])

Speaks (empnr, languagename)

Drives (empnr, carregnr)

Car (carregnr, carmodelname, [color])

Carmodel (carmodelname , country)

ConQuer: A Conceptual Query Language 9

S4 select X1.empnr
from Employee as X1
where X1.phone is null

and X1.empnr not in
(select empnr from Drives)

S5 select X1.empnr, X1.empname, X1.phone, X2.carregnr
from Employee as X1 left outer join Drives as X2 on X1.empnr = X2.empnr

The mapping algorithms automatically determine the appropriate join type (e.g.
inner versus outer) or subquery and grouping action by exploiting the ORM constraints.
The software can also reverse-engineer an existing relational schema to an ORM schema,
so that at no stage does the user have to decide how relational tables are to be related in
a query.

As a simple example of semantic optimization, consider the following query: “Who
works for a branch that is located in a city?”. In ConQuer this is formulated as Q6:

Q6 þEmployee
+-- works for Branch

+-- is located in City

Using ORM mandatory role constraints, this query is automatically transformed into
the simpler query “List all employees” and hence the following SQL is generated:

S6 select empnr from Employee

While the examples discussed here are simple, the benefits of the conceptual
approach should now be clear. The reader interested in more complicated queries may
wish to use the supplied ORM schema to formulate some harder queries first in
ConQuer and then determine the corresponding SQL. It will become apparent that it is
very easy to compose ConQuer queries that lead to extremely complicated SQL.

In section 2.1 we noted that ConQuer queries are minimally impacted by schema
evolution. As a trivial example, suppose that originally our schema in Figure 2 required
that employees drive at most one car. Query Q3 would now generate the following SQL:

S3’ select X1.empnr
from Employee as X1
where X1.carregnr is not null

 and X1.phone is not null

Suppose that the schema now evolves into that of Figure 2, so that employees may
drive many cars. The ConQuery query Q3 remains the same, even though the SQL
generated changes from S3’ to S3.

ConQuer: A Conceptual Query Language 10

Formal Semantics
In this section, two alternative semantics are given for ConQuer queries: firstly a
semantics based on conceptual versions of relational operators and, secondly, a
semantics based on bag comprehension. The treatment is necessarily brief but it should
be clear how the semantics could be completely formalized.

Conceptual Join Based Semantics

There is a certain similarity between relational tables and ORM fact types that can be
capitalized on to give a relational model for ConQuer queries. In ORM, fact types such as
‘Person works for Department’ correspond to a set of tuples. In a well designed ORM
model all fact types will be elementary (that is they cannot be split into simpler fact types
without loss of information). However, in a well designed relational model the tables will
not necessarily be elementary. Each row of a relational table corresponds to one or more
facts. In general, each ORM fact type will correspond to a null free projection of certain
columns in a relational table.

If we view fact types as relational tables then the conceptual join of two fact types in
an ORM model corresponds to a relational join of the fact types (when viewed as tables).
In general, a conceptual join of two fact types may or may not correspond to an actual
relational join of tables in the relational schema to which the ORM schema maps. For
example, if the two fact types map to the same table then an equijoin between the two
fact roles will not require a relational join since, in a sense, the join has already been
made. However, if two fact types map to different tables then an equijoin between the
two fact roles will require a relational join. Note that if an object is compositely identified
(e.g. a city may be identified by the combination of its name, state code and country) the
fact roles it plays will correspond to more than one column in a table and conceptual
joins involving it will correspond to relational joins over several columns.

Working from the root of a ConQuer query down, the query can be seen as a
sequence of conceptual joins and conceptual operations forming a series of conceptual
paths through the ORM model. Where the path passes through “and” and “or” nodes,
conceptual inner equijoins are made between fact types and conceptual intersections or
unions are made between the paths; where the path passes through “not” nodes the child
role is conceptually subtracted from the parent role (here it is understood that the
conceptual path below the “not” is evaluated first); where the path passes through
“maybe” nodes conceptual left-outer equijoins are made between fact types (here also
here it is understood that the conceptual path below the “maybe” is evaluated first).

Restrictions such as “Sales > 1 000 000” are placed on the population in fact roles
before joins are computed. Conceptual selections (ticks) correspond to relational
selections. Where an object type is compositely identified, a single conceptual selection
will result in several relational selections.

There are however several complicating factors. Firstly, the population of the root
object may not correspond to a single table column. If all the roles it plays are optional
then the population may correspond to the union of several columns. Thus, for example,

ConQuer: A Conceptual Query Language 11

the query “What are the names of all the countries?” (see Q7) would require a conceptual
union of all the fact roles that Country plays.

Q7 Country
+-- has þ Country Name

Secondly, there are two plausible ways of handling conditions on object types within
the scope of a “maybe”— ignore them or do not ignore them. If they are not ignored then
all the queries that can be expressed ignoring them can also be expressed by just deleting
the unwanted conditions. Pragmatically, the SQL generation is made much easier if they
are ignored; thus, on pragmatic grounds alone, in version 1.0 of InfoAssistant these
conditions are ignored.

Thirdly, bag functions are not easily expressible as relational operations. So we
postpone the treatment of the semantics of bag functions until the next section.

Bag Comprehension Based Semantics

Alternatively, a ConQuer query may be interpreted as specifying the contents of a bag,
via bag comprehension. For example, using “[”, “]” as bag delimiters, the query ‘Which
cars are red?’ (see Q8) corresponds to the expression:

[x : Car | ∃ y : Color; z : ColorName (x has y ∧ y has colorname z ∧ z = ‘red’)].

In general, a ConQuer query corresponds to the straightforward translation of the
query into first-order logic with the ticked object types quantified over by the bag
comprehension operator and the non-ticked object types by an existential quantifier.
Note that conceptual nulls can never occur so there is no need to use Lukasiewicz’s (or
any other) three valued logic.

Q8 þCar
 +- has Color ‘red’

Care must be taken in interpreting the “maybe” operator. Expressions of the form
“maybe α”, where α is some path expression, should be translated as:

α’ ∨ (¬ α ∧ x1 = ¨ ∧ x2 = ¨ ∧ … ∧ xn = ¨)

where α’ is the translation of α (with restrictions removed); x1, x2, … , xn are the selected
object types in α; and ¨ is a blank in the result set (relationally a null).

A semantics for the bag (aggregate) functions of ConQuer can be given as follows.
Construct a labeled bag expression corresponding to the ConQuer query where all
expressions involving aggregate functions have been elided and object types with ticked
aggregate function are treated as if they are themselves ticked.

For example, consider the query “What are the branches and total salary costs of
branches with a total salary cost of more than $1 000 000?”, which may be expressed in
ConQuer as Q9:

ConQuer: A Conceptual Query Language 12

Q9 þ Branch
+- employs Employee

+- earns þ total(Salary) > 1 000 000

Query Q9 would generate the following labeled bag:

let S = [x : Branch, y : $value | ∃ z : Employee; w : Salary (
 x employs z ∧ z earns w ∧ w has $value y)].

The effect of the aggregate functions can then be expressed by a bag comprehension
like:

[x : Branch, u : ℜ | 〈x〉 ∈ S1 ∧ u = (∑ 〈x’, y〉∈ S y | x = x’) ∧ u > 1 000 000]

where ℜ is the set of reals; Si, j, … , k is a set of tuples made up of the i’th, j’th, … , k’th
entries in each tuple of the bag S; and (∑ 〈x, y, … , z〉∈ S α | ρ) is, for each 〈x, y, … , z〉 in of the
bag S, the sum of every α such that ρ holds.

In general, each ticked object type and ticked aggregate function will be quantified
over by the bag comprehension, a conjunct will link selected object types to the
corresponding elements of S, a series of conjuncts will specify the value of each aggregate
function and a series of conjuncts will correspond to any conditions involving aggregate
functions.

Conclusion
This paper has discussed ConQuer, a new conceptual query language based on ORM
that enables end users to formulate queries in a natural way, without knowledge of how
the information is stored in the underlying database. A basic version of ConQuer is
supported in a commercial tool that reverse engineers existing relational schemas to an
ORM schema, which can then be queried directly. The benefits of a conceptual, and more
specifically an ORM-based approach, to queries were highlighted and a formal semantics
provided.

Currently the language is undergoing major improvements to both the language
architecture and the user interface, which will appear in a subsequent release. Moreover,
the FORML language used for ORM modeling is being unified with ConQuer. While the
current ConQuer architecture and mapping algorithms were developed by the authors,
they would like to acknowledge the contributions of Erik Proper in formalizing an
alternative version of the language and in suggesting the name “ConQuer”.

References
 1. Auddino, A., Amiel, E. & Bhargava, B. 1991 ‘Experiences with SUPER, a Database Visual

Environment’, DEXA’91 Database and Expert System Applications, pp.172-178

ConQuer: A Conceptual Query Language 13

 2. Date, C.J. 1996, ‘Aggregate functions’, Database Prog. & Design, vol. 9, no. 4, Miller
Freeman, San Mateo CA, pp. 17-19.

 3. Date, C.J. & Darwen, H. 1992, Relational Database: writings 1989-1991, Addison-Wesley,
Reading MA, esp. Chs 17-20.

 4. De Troyer, O. & Meersman, R. 1995, ‘A logic framework for a semantics of object oriented
data modeling’, OOER’95: Object-Oriented and Entity-Relationship Modeling, Springer
LNCS, no. 1021, pp. 238-49.

 5. Halpin, T.A. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice-
Hall, Sydney, Australia.

 6. Halpin, T.A. & Orlowska, M.E. 1992, ‘Fact-oriented modelling for data analysis’, Journal of
Inform. Systems, vol. 2, no. 2, pp. 1-23, Blackwell Scientific, Oxford

 7. Halpin, T.A. & Proper, H.A. 1995, ‘Subtyping and polymorphism in Object Role
Modeling’, Data and Knowledge Engineering, vol. 15, Elsevier Science, pp. 251-81.

 8. Halpin, T.A. & Proper, H. A. 1995, ‘Database schema transformation and optimization’,
OOER’95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, no. 1021, pp.
191-203.

 9. Hofstede, A.H.M. ter, Proper, H.A. & Weide, th.P. van der 1993, ‘Formal definition of a
conceptual language for the description and manipulation of information models’,
Information Systems, vol. 18, no. 7, pp. 489-523.

10. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S., 1995, ConceptBase— a
Deductive Object Base for Meta Data Management, Journal of Intelligent Information
Systems, Special Issue on Advances in Deductive Object-Oriented Databases, vol. 4, no. 2,
167-192.

11. Lawley, M. & Topor R. 1994, ‘A Query Language for EER Schemas’, ADC’94 Proceedings of
the 5th Australian Database Conference, Global Publications Service, pp. 292-304.

12. Meersman, R. 1982, ‘The RIDL conceptual language’, Research report, Int. Centre for
Information Analysis Services, Control Data Belgium, Brussels, Belgium, 1982.

13. Mylopoulos, J., Borgida, A., Jarke, M. & Koubarakis, M., 1990, Telos: a language for
representing knowledge about information systems, ACM Transactions Information Systems
vol. 8, no 4.

14. Parent, C. & Spaccapietra, S. 1989, ‘About Complex Entities, Complex Objects and Object-
Oriented Data Models’, Information System Concepts— An In-depth Analysis, Falkenberg,
E.D. & Lindgreen, P., Eds., North Holland, pp. 347-360

15. Proper, H.A. & Weide, Th. P. van der 1995, ‘Information disclosure in evolving
information systems: taking a shot at a moving target’, Data and Knowledge Engineering,
vol. 15, no. 2, pp. 135-68, Elsevier Science.

16. Rosengren, P. 1994, ‘Using Visual ER Query Systems in Real World Applications’,
CAiSE’94: Advanced Information Systems Engineering, Springer LNCS, no. 811, pp. 394-405.

ConQuer: A Conceptual Query Language 14

17. Staudt, M., Nissen, H.W., Jeusfeld, M.A. 1994, Query by Class, Rule and Concept. Applied
Intelligence, Special Issue on Knowledge Base Management, vol. 4, no. 2, pp. 133-157

18. Wintraecken, J.J.V.R. 1990, The NIAM Information Analysis Method: Theory and Practice,
Kluwer, Deventer, The Netherlands.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

