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Abstract: Collection types such as sets, bags and arrays have been used as data structures in 
both traditional and object oriented programming. Although sets were used as record 
components in early database work, this practice was largely discontinued with the 
widespread adoption of relational databases. Object-relational and object databases once 
again allow database designers to embed collections as database fields. Should collections be 
specified directly on the conceptual schema, as mapping annotations to the conceptual 
schema, or only on the logical database schema? This paper discusses the pros and cons of 
different approaches to modeling collections. Overall it favors the annotation approach, 
whereby collection types are specified as adornments to the pure conceptual schema to guide 
the mapping process from conceptual to lower levels. The ideas are illustrated using notations 
from both object-oriented (Unified Modeling Language) and fact-oriented (Object-Role 
Modeling) approaches. 
 

1 INTRODUCTION 
 
Information systems may be modeled at various levels. For analysis purposes, a conceptual schema of the 
application domain should first be developed. At this stage, modelers communicate with domain experts in 
their own terms, making it easier to get a clear, correct and complete picture of the requirements. Once the 
business model is understood, it can be implemented by mapping the conceptual schema to logical, 
physical, and external schemas. During this mapping process, further implementation details may be added. 
For database applications, the mapping from a conceptual schema to a logical database schema often 
involves a transformation in data structures. For example, a conceptual association may map to a relational 
table attribute. Though commonly used in programming, the practice of using collection types (e.g. sets, 
bags and arrays) as record components in database schemas largely disappeared with the widespread 
adoption of relational databases, where each table column is based on an atomic domain. However, the 
recent emergence of object-relational and object databases once again allows collections as database fields.  

How should collection types be specified within the conceptual analysis and logical design of data? 
Some approaches use collections directly within the conceptual schema, some specify them as annotations 
to the conceptual schema, while others relegate them to the logical schema. This paper examines these 
alternative approaches by way of examples, highlighting the conceptual and pragmatic issues underlying 
such choices. Its focus is on how and where to specify collection types in the modeling process, not on the 
advisability or otherwise of using collection types in a database implementation. The ideas are illustrated 
using notations from both object-oriented (Unified Modeling Language (UML)) and fact-oriented (Object-
Role Modeling (ORM)) approaches. The discussion is also relevant to some extended Entity Relationship 
(ER) approaches. 
 Procedures for mapping from conceptual models to logical models are readily available (e.g. [3, 11, 
13, 27]). For relational database systems, denormalization and fragmentation are often used to improve 
performance. Object-relational and object databases allow further denormalization, since table fields may 
contain collections rather than just atomic values. In practice, these performance-based design options are 
usually specified on the logical or internal model, and often the conceptual model is ignored after these 
changes are made. This practice can lead to weak coupling or inconsistencies between the conceptual and 
lower level models, making it difficult to leverage the conceptual model to facilitate schema evolution as 
the business changes, or to provide a conceptual means of accessing the data. One solution to this problem 
is to include collection types within the conceptual schema itself, where these collections map directly to 
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similar structures in the implementation. Another solution is to exclude collections from the pure 
conceptual schema us ed to validate the business model with the domain expert, but afterwards allow 
collections to be specified as annotations to the conceptual model to guide the mapping to and from the 
implementation model. Both these solutions allow tools to synchronize the conceptual and the lower level 
models. Sometimes a mixture of these two solutions is used. 
 The notion of annotating conceptual models is not new. Berglas proposed conceptual annotations for 
various rules, meta-authorization protocols and inheritance control [2], and both UML and ORM include 
constructs that can be viewed as conceptual annotations. UML class diagrams may include conceptual 
features (e.g. classes, associations, multiplicity constraints) as well as object-oriented implementation 
features (e.g. navigation directions, visibility settings). When stripped of implementation features, UML 
class diagrams may be regarded as an extended version of ER, for use in conceptual data modeling. 
Although UML has no sharp dividing line between conceptual and lower level features, implementation 
details may be thought of as annotations to the conceptual or analysis model. The UML standard may be 
accessed on [28]. Detailed discussions of UML may be found in [6, 29] and (with some notational 
differences) in [3].  

ORM is a conceptual modeling approach that makes no use of attributes as a base concept, always 
using a relationship instead. For example, the attribute Employee.birthdate is modeled in ORM as the fact type: 
Employee was born on Date. Object types in ORM are semantic domains, hence the connectedness of the model 
is always apparent. While this approach leads to larger diagrams, it promotes simplicity, semantic stability, 
verbalizability and populatability. ORM includes rich graphical and textual languages for capturing a wide 
range of business rules. Although such detail is needed to fully capture and transform models [19], various 
abstraction mechanisms allow the modeler to hide unwanted detail. One abstraction displays minor fact 
types as attributes of major object types [7], enabling ER-models and OO-models to be derived as views. 
An overview of ORM may be found in [14], a detailed discussion in [13], and comparisons between ORM 
and UML data modeling in [15, 16, 17]. 

The next section discusses whether set collections should be modeled conceptually as first class types 
or instead as annotations. Though the focus here is on sets, most of the discussion applies to collections in 
general. Collection types other than sets are then considered. The conclusion summarizes the main points 
and indicates areas of further research. 
 

2 SETS AS COLLECTION TYPES 
 
Conceptual data modeling has two basic data structures: relationship types or associations, and object types 
or classes (and data types). In ER and UML, an object type may have attributes, and in a sense is a named 
collection or aggregation of attributes (cf. a relational table as a named set of attributes, populated by sets of 
tuples). Unless specified as a collection however, object types are treated as simple (e.g. an instance of 
Employee is a single employee, not a set of employees). UML includes three ways in which collection 
types may effectively be introduced: stereotypes; multi-valued attributes; and constraints.  

UML does not predefine any data types, leaving it up to modelers to define their own type systems. 
For example, collection types may be specified directly, as stereotypes of classes, as shown in Figure 1. 
This is similar to the way collection types were specified in version 1.0 of the Open Information Model 
[21]. Collection types may be realized by implementation classes [e.g. 29, p. 485], and may be homo-
geneous (all its elements are of the same type, as in Figure 1) or heterogeneous (elements of different type).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  In UML, collection types may be specified as stereotypes of class  
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Some target systems support no collections, many support homogenous collections only, and some 
support homogeneous and heterogeneous collections (e.g. Object Store). However such specifications are 
typically used for program code design rather than conceptual modeling, so our discussion of UML will 
focus on the other options: multi-valued attributes and constraints. 

Figure 2(a) shows a simple ORM model. Object types are displayed as named ellipses, with solid lines 
for entity (non-lexical) types and dashed lines for value (lexical) types. Associations are named sequences 
of roles, where each role appears as a box connected to the object type playing it. Injective associations 
providing a reference scheme may be abbreviated in parentheses (e.g. empNr). A black dot indicates that a 
role is mandatory (e.g. each Employee has an EmpName). Arrow-tipped bars over one or more roles are 
uniqueness constraints, indicating that each instance populating that role sequence is unique. This example 
includes the four possible uniqueness patterns for binary associations: n:1 (each employee has at most one 
employee name); 1:1 (each employee heads at most one department, and vice versa); m:n (it is possible that 
the same employee drives many cars, and that the same car is driven by many employees); and 1:n (an 
employee may have many nicknames, but each nickname refers to at most one employee).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Four binary associations in ORM modeled as associations or attributes in UML 

 
Figure 2(b) shows a typical way of modeling this in UML. Department and Car are non-lexical object 

types, for which we probably want to record various properties not shown here, so they are modeled as 
classes. The heads and drives information relates non-lexical types, so is modeled using associations. Since 
employee number, employee name and nickname and lexical, they would usually be modeled as attributes, 
as shown. The empNr and empName attributes are single-valued as in traditional ER. In UML the default 
multiplicity of an attribute is 1 (exactly one).  So empNr and empName are mandatory (at least one) and 
single valued (at most one). Attribute multiplicities may be shown in square brackets after the attribute 
name. UML allows standard and user-defined constraints to be added in braces. In the absence of standard 
UML notation for primary reference, we use our own symbol {P}.  

Figure 2(c) shows an alternative way of modeling this situation that uses attributes only. If we decided 
for some performance reason to implement all the information in a single object-relation, this choice would 
be good for displaying the actual implementation model. The 0..1 multiplicity for deptHeaded indicates it is 
optional and single-valued. In the absence of standard UML notation for uniqueness of attributes, we use 
our own symbol {U1}.  

UML allows multi-valued attributes as an alternative to m:n and 1:n associations. In Figure 2(c), both 
cars and nicknames are multi-valued attributes whose instances are sets. This is one way of specifying set 
collections on a conceptual schema. The * (or 0..*) multiplicity indicates “zero or more”. An additional 
constraint is required to ensure that each nickname refers to at most one employee. A simple attribute 
uniqueness constraint (e.g. {U2}) is not enough, since nicknames is set-valued. Not only must each 
nicknames-set be unique for each employee, but each element in each set must be unique (the second 
condition implies the former). In both the UML models, this more complex constraint is specified 
informally in an attached note. From an implementation standpoint, this constraint is expensive if the 
structure is actually mapped to a set-valued attribute.  
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In conceptual analysis, the model should be easily communicated and validated with the domain 
expert. For this purpose, explicit associations are typically more suitable than attributes, especially multi-
valued attributes. Why? Associations and related constraints are easily verbalized as sentences readily 
understood by non-technicians. Moreover, constraints can more easily be checked using populations. Each 
association in Figure 2(a) can be populated with data illustrating which uniqueness pattern applies, and 
counter-examples can be added for acceptance or rejection by the domain expert. ORM was specifically 
designed to facilitate this process, by having a role box associated with each column in the fact table. These 
benefits of ORM are exploited in Microsoft Visio Enterprise, which provides automated support for both 
verbalization and population of ORM models. This model validation could be done manually in UML, 
assuming extensions to disambiguate ordering within non-binary associations. UML provides object 
diagrams where each instance may be displayed separately with its own attribute values, but these are 
awkward for checking constraints against multiple instantiations [16, 17]. Associations allow various 
constraints on the “role played by the attribute” to be expressed in standard notation, rather than resorting to 
non-standard or complex extensions (as in our braced comments).  

Associations tend to be more stable than attributes. Consider the association: Employee drives Car. To 
record how many accidents an employee had when driving a given car, in UML we make a Drives class out 
of the drives association (the same name must be used for both association and class) and add the attribute 
Drives.nrAccidents. In ORM we objectify the drives association as Driving, and add the association Driving had 
NrAccidents. If instead we modeled the drives feature as an attribute, we could not add new details without 
first changing our original schema to replace the attribute by an association or class. Populating attributed 
classes leads to null values, with all their attendant problems, and the connectedness between an attribute 
and its domain may not be obvious. This is one reason to use attributes only when their domain is a simple 
data type rather than an object class. Finally, queries involving multi-valued attributes often require some 
way of extracting their components, and hence complicate the query process for users. 

For these reasons, multi-valued attributes should be avoided in conceptual models, which need to be 
validated with the domain expert. If attributes are used to show developers that an m:n or 1:n association 
will be implemented as a multi-valued attribute, this could be done as a sub-conceptual view of the 
association version of the model. For example, assuming some way of cross-referencing, we could use 
Figure 2(b) as an analysis model and Figure 2(c) as a design model. This objective can also be achieved by 
annotations, as discussed later. 

Although UML allows collection types to be introduced directly as stereotypes, base ORM, as 
supported in industry tools, has no such feature. However various ORM extensions, such as the Predicator 
Set Model (PSM) [22, 23, 24, 25] do support collection types (sets, sequences, unique sequences, bags and 
schemas). These extensions often model such collections as first class types. The schema type may be used 
to provide an argument on which operations may be defined ([10], [9]) in a similar way to UML’s 
encapsulation of operations within classes. Although relationship objectification and composite 
identification do not involve collections, these features along with collection types are sometimes regarded 
as abstraction mechanisms [9]. Abstraction and view mechanisms help manage not just information 
quantity but also information complexity. As the underlying DBMS structures grow more complex, so do 
languages that deal directly with them. For example, the addition of constructors for building sets, bags and 
lists requires additional language features to not only declare such structures but also manipulate them. The 
language user now has many more choices as to how to formulate a model, update or query.  

ORM supports some object-oriented features directly (e.g. subtyping [18] and composite domains), 
and can be extended with other object-oriented features. If these extensions are provided as view 
mechanisms or annotations rather than by adding them to the base ORM framework, the simplicity and 
stability of ORM models and queries can be retained at the same time as performance is improved by use of 
non-relational implementation structures. In both UML and ORM, use of object-identifiers (oids) and 
complex object constructors (e.g. set or array constructors) seems best relegated to the logical level rather 
than the conceptual level. 

An analysis of how collection types have been used in practice indicates that such constructors should 
be used with extreme care, if at all, in developing a base conceptual model. Undisciplined use of 
constructors often leads to incorrect or incomplete solutions, or to overlooking a simpler solution that does 
not use collections. However, there are three main arguments in favor of conceptual constructor usage. 
Firstly, they lead to more compact models. Secondly they explicate the connection between conceptual and 
physical models (for a non-relational implementation). Thirdly they allow unnamed structures to be 
modeled directly. Let’s examine these claims briefly, using set collections.  
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Collection types can reduce the size of a model diagram, but often at the expense of hiding other 
detail. The compactness advantage disappears if the collection-view can be generated as an abstraction, 
which is certainly possible. Collection types explicate the connection to an implementation model that uses 
those collections as storage structures. However this can also be achieved by specifying the collections as 
annotations to the conceptual model rather than as first class types.  

This leaves us with the advantage (or otherwise) of modeling unnamed structures as first class types. 
There are several examples in the literature used in support of this proposal. As a classic example [20], 
consider a convoy as an unnamed set of ships. This may be modeled in ORM using a set collection type, as 
shown in Figure 3(a). Various notations exist for collection types. In this paper, ORM collection types are 
depicted as soft rectangles, with the collection kind (set, bag etc.) indicated in bold. 

Figure 3(b) shows an alternative flat model in both ORM and UML using an association, and a name 
to identify each convoy. In practice, convoy names are very useful, making it easy to verbalize facts about 
convoys, and to check constraints. The uniqueness constraint on the ORM model asserts that each Ship is in 
at most one Convoy. This constraint is captured in the UML diagram also, since the solid diamond 
indicates composition (strong aggregation). This constraint is missing from Figure 3(a). In most cases, use 
of collection types makes it harder to express constraints on collection members. The association in the flat 
model can also be conveniently populated with fact instances, to help validate the constraint.  

 
 
 
 
(a)      (b) 
 

 
 
 

Figure 3  Convoy modeled as: (a) an unnamed set type (b) a named simple object type 

 
For snapshot purposes, it is convenient to identify a convoy by its name (or by its flagship). The 

convoy membership fact type can be temporalized to maintain an historical record of membership, directly 
in temporal ORM, or in non-temporal ORM either by using the ternaries Ship joined Convoy on Date and Ship left 
Convoy on Date, or by nesting the historical m:n association (Ship was in Convoy) as ConvoyMembership, and adding 
ConvoyMembership began on Date; ConvoyMembership ended on Date. In UML, this history may be modeled using 
ConvoyMembership as an association class with appropriate date attributes (possibly multi-valued) or 
associations. Whether it is philosophically correct to use the word “convoy” to allow a convoy to be the 
same convoy after a ship leaves is of little practical interest. 

As a related example, consider the notion of team membership, where it is possible for a person to be a 
member of many teams and vice versa. Figure 4 shows how to model this in ORM with and without the set 
constructor. In Figure 4(b) the spanning uniqueness constraint indicates the association is m:n. The circled 
“eu” is an “extensional uniqueness” constraint [25], to declare that teams may be defined by their 
membership (i.e. different teams cannot have exactly the same set of members). This constraint is implicit 
in Figure 4(a). Its use in Figure 4(b) allows unnamed structures without introducing collection types.  

 
 
 (a)       (b) 
 
 
 

Figure 4  Two ways of modeling team membership 

 
An alternative notation for this constraint is discussed in [1], where it is argued that if teams are 

unnamed in the real world, this must be reflected in the conceptual model, which must obey the 
conceptualization principle [26] by modeling only conceptually relevant features. We adopt a relaxed 
reading of this principle, encouraging the introduction of identifiers that improve model usability. Here it is 

Ship
(name)

Convoy
(name)is in

Person
(name)

"Team"
set

Ship
(name)

"Convoy"
set

Person
(name) Teamis in

eu

shipName {P}

Ship

convoyName {P}

Convoy0..1*
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advisable to add a simple identifier for teams (e.g. a team name) since this facilitates talk about teams. If 
Figure 4(b) depicts the as-is model, the to-be model would add “(name)” as a reference scheme for Team. 
The extensional uniqueness constraint is still required if we definitely don’t want two different teams to 
have the same membership. This constraint is very expensive to enforce, so should only be used when 
necessary. 

A complex example cited in the ORM literature to justify the use of constructors is the chemical 
reaction model [12]. This models reactions such as: 2H2 + O2 � 2H2O. One way of modeling this with a set 
collection type is shown in Figure 5(a). This model, based on [22] treats each side of a reaction equation as 
a set of chemical quantities, e.g. {(H2, 2), (O2, 1)}. The reaction itself is then captured in the binary 
input/output association. An alternative flat model is shown in Figure 5(b). Here a reaction number is 
introduced as a convenient way of referring to reactions. This model also shows a complex example of the 
extensional uniqueness constraint.  

 
(a)          (b) 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5  Chemical reactions modeled (a) with and (b) without sets 

 
Although Figure 5(a) is more compact, its use of a set constructor makes it harder to think about. As 

evidence of this, it lacks a simple constraint captured in Figure 5(b). Can you spot it? The uniqueness 
constraints in Figure 5(b) ensure that each chemical occurs at most once in each reaction side (e.g. to 
exclude equations such as 5H � 3H + 2H). This is not enforced in Figure 5(a). For example, we may 
populate the input/output association with the tuple �{(H, 5)}, {(H, 3),(H, 2)}�. The set-based model makes 
this constraint harder to conceive and express.  

In Figure 5(a) the reaction association is m:n (presumably other conditions such as catalysts and 
temperature could be varied to have the same input reagents produce different results). If we instead 
demand that the same input always gives the same output, this association becomes 1:1. This is easy to 
model in Figure 5(a), but harder to model in Figure 5(b). This is one of those rare cases when we encounter 
a constraint on a collection that cannot be easily modeled as a constraint on the members. The opposite 
situation (a constraint on members that is hard to model on collections) is far more common.  

An alternative way to model chemical reactions using collections is discussed in [12], which models a 
reaction as a set of sets of object-role pairs. Although the structure of this model is difficult to comprehend, 
even for modelers much less the domain experts, it is argued to be the only correct way of modeling the 
situation, based on a deterministic principle that one birth transition instance must correspond to exactly 
one object instance. Our viewpoint is that communication is more important than determinism, and there 
are often many correct ways to model the same application. 

Hence there seems to be no compelling case to introduce collection types as first class citizens in the 
conceptual model. We still need some way of being able to specify collections for implementation in 
object-relational and object databases. While this can be done directly on the logical schema (as supported 
in some tools), it is desirable that there be a two-way transformation between conceptual and logical levels, 
so that changes in one can be communicated to the other to keep the models synchronized. The simplest 
way to do this is to specify collection type mapping as annotations to the pure conceptual schema, resulting 
in an annotated conceptual schema used only by the developer, not the domain expert, for the sole purpose 
of controlling the mapping between conceptual and lower levels.  
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(nr)+
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... inputs ... of ...
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Figure 6  A set annotation as an extension to  (a) ORM and (b) UML, leading to implementation (c) 

 
As a simple example, see Figure 6(a) and (b). Here the reviewer role played by Person is annotated to 

indicate that its instances will be mapped as a set-valued attribute of Movie in the actual implementation, as 
shown more directly in Figure 6(c). For ORM, this already has tool support, though the current notation 
differs from the one shown here. For UML, a {--> set} constraint might be used for this purpose; though 
not standard, this is analogous to UML’s {ordered} constraint (see next section).  

Figure 6(a) includes an exclusion constraint between the director and reviewer associations. Depicted 
by “⊗ ”, this constraint verbalizes as: no Person directed and reviewed the same Movie. ORM tools treat this 
constraint as formal, and generate DDL code to enforce it. A counterexample has been added to test this 
constraint with the domain expert: Can Ron Howard both direct and review movie 1? UML has no graphic 
symbol for this constraint, so it is added informally as a note. It could be specified formally in UML’s 
Object Constraint Language (OCL) [30], but rules in OCL are typically too mathematical for the average 
domain expert to understand. 

For a relational implementation, if the set annotation is removed from Figure 6(a) or (b), the default 
mapping generates three tables (Movie(movieNr, title, director), Person(personName, birthCountry), Reviewed(personName, 
movieNr)), three foreign key references (Movie.director references Person, Reviewed.personName references Person, 
Reviewed.movieNr references Person) and the exclusion constraint assertion check (not exists (select * from Movie 
natural join Reviewed where director = personName). 

For an object-relational implementation, if the set annotation is included, the review facts are grouped 
as a set-valued field in the Movie table, leading to two tables (Person(personName, birthCountry), Movie (movieNr, 
title, director, reviewers: set of Person)), one foreign key reference (Movie.director references Person) and appropriate to 
code to enforce the constraint director not in reviewers. Figure 6(c) shows this implementation more directly, 
with one constraint captured informally as a note. Although this figure might assist the developer once the 
implementation choice has been made, it should not be used for the conceptual model. The review facts 
could be grouped into a separate table, a Movie table or even a Person table. The modeler needs to consider 
carefully the impact on queries and updates (e.g. component access) before deciding which is the best 
choice. These considerations are not relevant to conceptual analysis, where a non-annotated version of 
Figure 6(a) or (b) should be used. 
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has

was
born
in
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3 OTHER KINDS OF COLLECTION TYPES 
 
Although a number of collection types were slated for inclusion in the object-relational database standard 
SQL:1999, the only one that made it was array (a one dimensional array with a maximum number of 
elements). It is anticipated that three further collection types will be added in SQL200n: set (unordered 
collection with no duplicates); multiset (bag, i.e. unordered collection that allows duplicates); and list 
(sequence, i.e. an ordered bag). Some commercial systems already support these. Our experience with these 
systems is that little performance gain is actually achieved by use of collection types. This may change as 
the technology matures. Array, set, bag and list are also included as collection types in the object database 
standard ODMG 2.0 [8]. Currently UML includes none of these as standard constraint annotations, but does 
include the constraint {ordered} to indicate mapping to an ordered set (i.e. a sequence with no duplicates).  

A simple example of a flat model for the bag (multiset) constructor is shown in Figure 7. Again, an 
identifier for bags may be introduced.  

 
 
 
 
 
 
 

 
 

Figure 7  Flat metamodel of a bag 

 
 A sequence is an ordered bag, and in ORM its collection type is marked “seq”. If the sequence cannot 
have duplicates, it is a “unique sequence” and is marked “seq”. As an example of the unique sequence (or 
ordered set) constructor, see Figure 8(a). Here an author list is a sequence of authors, each of whom may 
appear at most once on the list. This may be modeled in flat ORM by introducing a Position object type to 
store the sequential position of any author on the list, as shown in Figure 8(b). The uniqueness constraint on 
the first two roles declares that for each paper an author occupies at most one position; the constraint 
covering the first and third roles indicates that for any paper, each position is occupied by at most one 
author. The textual constraint indicates that the positions in any list are numbered sequentially from 1. 
Although this ternary representation may appear awkward, it is easy to populate and it facilitates any 
discussion involving position  (e.g. who is the second author for paper 21?). From an implementation 
perspective, a sequence structure could still be chosen: this can simplify updates by localizing their impact. 
However the update overhead of the positional structure is not onerous, given set-at-a-time processing (e.g. 
to delete author n, simply set position to position –1 for position > n). 
 Though not shown here, the ternary solution can also be modeled in UML. If the ternary model is 
chosen as the base model, it would be useful to support the annotated binary shown in Figure 8(c) or Figure 
8(d) as a view of the base model. In ORM a unique sequence annotation is connected to the relevant role. 
This representation is equivalent to the {ordered} constraint in UML, as shown in Figure 8(d), indicating 
that the authors are to be stored as a unique sequence. 

As an example of a pure sequence (allowing duplicates), a paragraph may be modeled as a sequence of 
sentences. Arrays may be handled in base ORM by using a numeric object type that explicitly denotes the 
ordering. Use of arrays in mapping may be indicated by a square brackets marker, optionally including 
array size. For example, for the association Athlete holds Rank in Sport a “[10]”annotation at the right end of the 
pair of roles played by Athlete and Rank indicates that this information will be stored within Sport in an 
array of size 10 encoding Rank as the array index. 

When it comes to querying models as opposed to building them, users are typically far less skilled 
than modelers, and it seems unreasonable to burden users with the complexity of accessing information via 
constructors. At least at the query level, users should be able to formulate their queries in plain language 
without having to know how facts are grouped into structures in the underlying database or how particular 
constructors may be used in the query. An ORM conceptual query tool has been developed with just this in 
mind [4, 5]. The mapping of a conceptual query to an internal query is a job for an expert, not the average 
user. A query tool should perform this mapping automatically.  

Bag

Element
(id)

Frequency
(nr)+

eu

... includes ... with ...
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(a)           (b) 
 
 
 
 
 
 
 
 
 
(c)           (d) 
 
 
 
 
 
 

Figure 8  Unique sequences modeled in different ways 

 
4 CONCLUSION 

 
Although direct use of collection types in a conceptual model can lead to compactness, an alternative flat 
model (with no constructors) of comparable convenience or only minor inconvenience is generally 
available. Use of constructors often makes it harder to express constraints (which typically occur on 
members, not collections). Moreover, because constructors give rise to compound facts, they are awkward 
to populate or check for validation. To make matters worse, use of constructors requires more sophisticated 
modeling skills (even good modelers are prone to make subtle mistakes with them). Constructors also tend 
to be over-used (i.e. they are used even when there is there is a simpler modeling solution without them). It 
seems better to free the conceptual modeler from this added complexity, instead relegating constructor 
usage to annotations that guide the later mapping phase under automated support.  

If collection types are used in the implementation, the use of collection-valued attributes or classes 
may have some use in a design version of the data model, in order to show the implementation structures 
directly. In this case, tool support should be provided to enable the modeler to move between analysis and 
design models at will. 

Clearly, if constructors are to be used at all in conceptual modeling, some strong modeling guidelines 
need to be identified so that the appropriate constructors are judiciously chosen. This applies even more so 
for choosing collection types in the implementation model. The development of such design guidelines, 
especially for logical/physical models, is recommended as a practical area of future research. 
 The current release of our Visio Enterprise product includes support for object-relational databases, 
including collection types (and row types, installable types etc.) as well as basic annotations to ORM 
models. It also includes support for UML for object-oriented code design. More flexible support for 
collection types within both ORM and UML is currently being investigated.  
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