
Modeling Dynamic Rules in ORM

Herman Balsters
1
, Andy Carver

2
, Terry Halpin

2
 and Tony Morgan

2

1 University of Groningen, The Netherlands

e-mail: H.Balsters@rug.nl
2 Neumont University, Utah, USA.

e-mail: {andy, terry, tony.morgan}@neumont.edu

Abstract: This paper proposes an extension to the Object-Role Modeling ap-

proach to support formal declaration of dynamic rules. Dynamic rules differ

from static rules by pertaining to properties of state transitions, rather than to

the states themselves. In this paper, application of dynamic rules is restricted to

so-called single-step transactions, with an old state (the input of the transaction)

and a new state (the direct result of that transaction). Such restricted rules are

easier to formulate (and enforce) than a constraint applying historically over all

possible states. In our approach, dynamic rules specify an elementary transac-

tion type indicating which kind of object or fact is being added, deleted or up-

dated, and (optionally) pre-conditions relevant to the transaction, followed by a

condition stating the properties of the new state, including the relation between

the new state and the old state. These dynamic rules are formulated in a syntax

designed to be easily validated by non-technical domain experts.

1 Introduction

Object-Role Modeling (ORM) is a fact-oriented approach for modeling, transforming,

and querying information in terms of the underlying facts of interest, where facts and

rules may be verbalized in language readily understandable by non-technical users of

the business domain. In contrast to Entity-Relationship (ER) modeling [4] and Uni-

fied Modeling Language (UML) class diagrams [18], ORM models are attribute-free,

treating all facts as relationships (unary, binary, ternary etc.). ORM includes proce-

dures for mapping to attribute-based structures, such as those of ER or UML. We use

the term “ORM” to include a number of closely related dialects, such as Natural lan-

guage Information Analysis Method (NIAM) [27] and Fully-Communication

Oriented Information Modeling (FCO-IM) [1]. For a basic introduction to ORM see

[13], for a thorough treatment see [8]. For a comparison of ORM with UML see [10].

Business rules include constraints and derivation rules. Static rules apply to each

state of the information system that models the business domain, and may be checked

by examining each state individually (e.g. each person was born on at most one date).

Dynamic rules reference at least two states, which may be either successive (e.g. no

employee may be demoted in rank) or separated by some period (e.g. invoices ought

to be paid within 30 days of being issued). While ORM provides richer graphic sup-

port for static rules than ER or UML provide, ORM as yet cannot match UML‟s sup-

port for dynamic rules.

Since the 1980s, many extensions to ORM have been proposed to model temporal

aspects and processes. The TOP model [7] allows fact types to be qualified by a tem-

poral dimension and granularity. TRIDL [3] includes time operators and action se-

mantics, but not dynamic constraints. LISA-D [16] supports basic updates. Task

structures and task transactions model various processes [15], with formal grounding

in process algebra. EVORM [22] formalizes first and second order evolution of in-

formation systems. Some explorations have been made to address reaction rules [e.g.

14], and some proposals suggest deriving activity models from ORM models ([23]).

Some fact-based approaches that share similarities with ORM have developed deep

support for modeling system dynamics. For example, the CRL language in

TEMPORA enables various constraints, derivations and actions to be formulated on

Entity-Relationship-Time (ERT) models [24, 25], and the OSM method includes both

graphical and textual specification of state nets and object interactions [6].

Various attribute-based methods such as UML and some extensions of ER incorpo-

rate dynamic modeling via diagrams (e.g. UML state charts and activity diagrams).

For textual specification of dynamic rules, the most popular approach is the Object

Constraint Language (OCL) [19, 26], but the OCL syntax is often too mathematical

for validation by non-technical domain experts. Olivé suggests an extension to UML

to specify temporal constraints, but this is limited to rules about creation of objects

[20]. Substantial research has been carried out in providing logical formalizations for

dynamic rules, typically using temporal logics or Event-Condition-Action (ECA)

formalisms (e.g. de Brock [2], Lipeck [17], Chomicki [5], and Paton & Díaz [21]).

Many works also describe how to implement dynamic rules in software systems.

However, to our knowledge, no one has yet provided a purely declarative means to

formulate dynamic constraints in a textual syntax suitable for non-technical users.

This paper provides a first step towards such support for dynamic rules in ORM by

addressing single-step transactions, with an old state (the input of the transaction) and

a new state (resulting from that transaction). Our dynamic rules specify an elementary

transaction type indicating the kind of object or fact being added, deleted or updated,

and (optionally) pre-conditions relevant to the transaction, followed by a condition on

the new state, including its relation to the old state. These dynamic rules are formu-

lated in a syntax designed for easy validation by non-technical domain experts. Our

aim is to identify basic rule patterns rather than provide a complete, formal grammar.

The rest of this paper is structured as follows. Section 2 focuses on rules involving

updates to a single role in a functional binary fact type. Section 3 extends the exam-

ples of Section 2 to show how history can be added. Section 4 examines rules involv-

ing the addition of instances of non-functional fact types. Section 5 discusses a more

complex case involving derivation. Section 6 briefly discusses fact deletion. Section 7

summarizes the main results, suggests topics for further research, and lists references.

2 Updating Single-Valued Roles in a Functional Fact Type

Our first sub-case is a functional (n:1 or 1:1) binary fact type. Fig. 1 shows a func-

tional fact type in ORM 2 notation [11], where role names may be displayed in square

brackets and used to verbalize rules in attribute-style [9].

Employee

has a salary of

MoneyAmount

[salary]

A

R

B

[p]

A

R

B

[p]

Fig. 1. In each state, each employee has at most one salary

Suppose a dynamic constraint requires that salaries of employees must not de-

crease. We show two alternative expressions for this constraint, using the reserved

words old and new to refer to situations immediately before and after the transition.

 (a) Context: Employee (b) For each Employee,

 new salary >= old salary new salary >= old salary

Here the context of the constraint is the object type Employee, and the elementary

transaction updates the salary of the employee. The presence of the new and/or old

keywords signals that the prospective transaction is an update (rather than an addition

or deletion); and this all implies that the rule is applicable only when there is in fact

an "old" marital status (of the same student) to update. The constraint is violated if

and only if it evaluates to false (like SQL check-clauses). So if the employee had no

prior salary, the inequality evaluates to unknown and hence is not violated. In this

case we record only a “snapshot” of the current salary (i.e. no salary history) which

allows a simple constraint structure. A later example considers salary history.

Specification of Employee as the context is sufficient in this case because the fact

type is n:1. While the rule may be specified in relational style, using a predicate read-

ing, an attribute style formulation using a role name is often more convenient. Each

transaction is always considered to be isolated (serializable).

Constraints of this kind are fairly common in business systems. Generalizing from

the example above to any functional binary fact type of the form A R‟s B, with B‟s

role name p (denoting the property or “attribute” of A being constrained), we obtain

the constraint formulation pattern in Fig. 2, where denotes the required relationship

between the values of the property p after and before the transition.

 Context: A | For each A,

 new p old p

Fig. 2. General pattern for updating a named, single-valued role on n:1 and 1:1 relationships

Our dynamic-constraint language should also be able to handle constraints that in-

volve a table of state-transitions. A simple example involves marital states:

The matrix shows which updates to a given student's marital status are possible. There

is no functional or deterministic relationship between an old state and a new state that

From \ To Single Married Widowed Divorced

Single 0 1 0 0

Married 0 0 1 1

Widowed 0 1 0 0

Divorced 0 1 0 0

Employee

MoneyAmount

[salary]

… was awarded … on ...

Date

can or cannot follow. One simple solution involves that sort of construct which, in

programming languages, is commonly called a case or switch statement:

Context: Student
in case old status =
 'single': new status = 'married'
 'married': new status in ('widowed', 'divorced')
 'widowed': new status = 'married'
 'divorced': new status = 'married'
end cases

Fig. 3. Updating the marital status of a student

One may alternatively specify impossible transitions for any given case, e.g. the

divorced case could be reworded as “new status not in ('single', 'divorced', 'widowed')”. To say

the new status must not equal some value, one uses <> instead of =.

We can generalize similar kinds of constraints in the manner shown in Fig. 4. In

the constraint, B1, B2, B3, etc. represent possible Bs that may play role p.

Context: A
in case old p =
 'B1': new p in (B2, B3, …)
 - - etc.
end cases

Fig. 4. General pattern for enumerated values

3 Examples of historical facts

Our earlier constraint that an employee's salary could not decrease required only a

“snapshot” view of salary. We now extend this simple case by requiring a salary his-

tory (see Fig. 5). The new keyword is not required here because we add a fact rather

than update an existing fact. We assume here the existence of a function previous that

can return the existing salary most recently added for any specific employee.

Context: Employee
For each salary added
if before:
 Employee was awarded some salary on some Date
then after:
 salary >= previous salary

Fig. 5. Salary example with history

Returning to the specific example of recording a student's marital status, a similar

extension to add a history of marital status values for each student is shown in Fig. 6.

A B

[p]

has

Student
(name)

has

Marital
Status
(name)

{‘single’, ‘married’,
‘divorced’, ‘widowed’}

is pursuing

Degree
(code)

[status]

Student

MaritalStatus

[status]

… acquired … on ...

Date

{‘single’,
 ‘married’,
 ‘widowed’,
 ‘divorced’}

Context: Student
For each status added
if before:
 Student acquired some MaritalStatus on some Date
then after:
 in case previous status =
 'single': status = 'married'
 'married': status in ('widowed', 'divorced')
 'widowed': status = 'married'
 'divorced': status = 'married'
 end cases

Fig. 6. Marital status example with history

We generalize this example to a pattern for recording history of some kind of thing

acquiring some property at some instant, as shown in Fig. 7.

Context: A
For each p added
if before:
 A acquired some B at some Tag
then after:
 in case previous p =
 B1: p in (B2, B3, ...)
 - - etc
 end cases

Fig. 7. General pattern for enumerated values with history

As before, B1, B2, etc. represent possible Bs that may play role p. “Tag” represents

some value that consistently increases (or perhaps decreases) for a given A as new

facts are added. Tag values equipped with an ordering criterion are isomorphic to a li-

nearly ordered time-stamping mechanism. Dates and times obviously fit this role, but

so also do other kinds of sequenced identifiers such as “incident number”, “version

number” or other kinds of sequenced identifiers. We assume that the Tag history is

complete for each A (we add a new fact to a history of all previous facts of the same

type for that A, and never add a fact that is “earlier” than some existing fact).

The dynamic constraint above applies to a situation where new facts are added to

an existing history. If we require a constraint on the addition of the first fact of this

type for each object of type A, then we need a separate constraint without the “before”

condition given above. For the first addition of a fact of this type, if we do not care

about the role p added, then we do not need to specify the additional constraint.

4 Adding Instances of a Non-functional Fact Type

We now consider adding fact instances to a non-functional fact type (no single-role

uniqueness constraint), such as the Seating occupies Table association in Fig. 8, which

shows a model fragment extracted from a restaurant application.

A

B

Tag

[p]

... acquired ... at ...

Seating
(nr)

occupies /is occupied by
Table
(nr)

[table]

is vacant *

Seating
(nr)

occupies /is occupied by

Table
(nr)

[table]
is vacant *

Time
(dhms)

started at

ended at

[startTime]

[endTime]

* Table is vacant if and only if
 each Seating that occupies that Table

ended at some Time.

Fig. 8. Fragment of an ORM schema about restaurant seatings

A seating is the allocation of a party (of one or more customers) to one or more va-

cant tables. Each seating starts at some instant and eventually ends at some instant.

The circled bars depict the external uniqueness constraints that when a seating starts

or ends, any given table is assigned to at most one seating. The asterisked rule is a de-

rivation rule for the snapshot fact type Table is vacant. Notice that the model maintains a

history of seatings (e.g. for each table we record all the seatings it was previously al-

located to). To ensure that no seatings that overlap in time occupy the same table, the

following rather complex textual constraint could be added:

 For each Seating1, Seating2:
 if Seating1.startTime <= Seating2.startTime

 and (Seating2.startTime <= Seating1.endTime or not exists Seating1.endTime)
then no Table that is occupied by Seating1 is occupied by Seating2

Instead of this static rule, if we ignore the possibility of people changing their

tables during a seating, the user interface itself can ensure that only tables that are cur-

rently vacant may be selected for a seating (for multiple screens used in parallel, an

appropriate locking mechanism is assumed). Fig. 9 shows the relevant schema frag-

ment and the dynamic rule that a table may be assigned to a seating only if it is vacant

at that time. The context for the constraint is the fact type Seating occupies Table. The

elementary transaction adds an instance of this fact type. The reserved words before

and after denote the states just before and after the transaction, needed indicates the

precondition is necessary for the fact addition to take place (not just for this con-

straint), and the is scoped to the transaction instance.

Context: Seating occupies Table
For each fact added
needed before: the table is vacant
after: the table is not vacant

 Fig. 9. A dynamic constraint for adding instances to the seating fact type

Note that the ability to specify a fact type for the context leads to a much more nat-

ural formulation than would be obtained if the context had to be specified as an object

type or class, as is the case with OCL. Fig. 10 models the seating example in UML in

less detail (e.g. UML has no graphic notation for uniqueness constraints on attributes).

nr: Integer

startTime: Time

endTime [0..1]: Time

Seating

nr: Integer

isVacant: Boolean

Table

Occupies

* 1..*

nr: Integer

startTime: Time

endTime [0..1]: Time

Seating

nr: Integer

isVacant: Boolean

Table

Occupies

* 1..*

C
*

*
1 1

Fig. 10. A UML class diagram for the seating example

To specify in OCL the dynamic constraint that a table may be assigned to a seating

only if it is vacant at that time, we could try to state this in the context of the Seating

class using an operation addTable (taking a parameter t of type Table) thus:

context Seating::addTable(t:Table)

pre: (t.isVacant)

post: not(t.isVacant) and (table includes(t))

This however is incorrect OCL, because it introduces a side effect: the update op-

eration addTable(t: Table) updates not only an object from the class Seating, but also

the value of the parameter t. If we use Table as the context, we may rephrase our con-

straint as “A seating can be allocated to a table only if that table is vacant”, and intro-

duce an update operation allocateSeating(s: Seating) within the class Table thus:

context Table::allocateSeating(s: Seating)

pre: isVacant

post: not isVacant and (seating includes(s))

This constraint, though free of side effects from the point of view of the Table

class, is still arguably not free of side effects as seen from the Seating class, since in-

vocation of allocateSeating to some specific table t0 and seating s0 would result in the

property “s0.table includes(t0)” changing the value of s0. These side effects

result from trying to specify the addition of a complete fact within the context of one

specific class. A possible resolution is to introduce an auxiliary class C (e.g. repre-

senting the full model), associated with both the Seating and Table classes, as shown

in Fig. 11. Addition of the fact “s0 occupies t0” could then be represented within the

context of class C. This rather roundabout and artificial solution is needed in order to

add complete facts simply because OCL requires that any rule context must be a class.

Fig. 11. Introducing an artificial class to provide the context for a side-effect free rule

5 A More Complex Case Involving Derivation

Let us now consider the case of a transaction dealing with operations on one or more

accounts (see Fig. 12). Accounts can be augmented by having a deposit or interest

added, or they can be diminished by a fee charge or withdrawal. Simple transactions

refer to an operation on one account only, while transfer transactions deal with two

accounts, where a money amount is transferred from the first account to a second ac-

count. We record historical information of all transactions, from which the current ac-

count balances may be derived. We assume that an account exists prior to any transac-

tion on it, and that on the event that an account is opened, its balance is set to zero.

Fig. 12. An example involving historical and derived snapshot data

We now use dynamic rules to describe a transition from an old state to a new state

for both a simple and a transfer transaction. The order of the components is irrelevant.

Context: Account Context: SimpleTransaction
For each instance added For each instance added
balance = 0 in case type =

 'dep', 'int': Transaction.balance1 = (old account1.balance + amount)
 'wdl', 'fee': Transaction.balance1 = (old account1.balance - amount)
 end cases
 new account1.balance = Transaction.balance1

Context: TransferTransaction
For each instance added
balance1 = (old account1.balance – amount) and
balance2 = (old account2.balance + amount) and
new account1.balance= balance1 and
new account2.balance= balance2

6 Deleting Instances of a Non-functional Fact Type

So far, all our example rules apply to either state-updates or fact-additions; we now

briefly consider an example that applies to fact-deletions. A common situation in-

volves a constraint on the length of time that a certain history of events or entity states

Account
(nr)

Transaction
(nr)

MoneyAmount
(USD)

TransactionType
(code)

is of

involves

yields balance1 of **

<< is on or from

[balance1]

[amount]

[type]

{‘dep’, ‘int’, ‘wdl’, ‘fee’, ‘xfr’}

has balance of **

[balance]

Simple
Transaction

Transfer
Transaction

MoneyAmount
(USD)

yields balance2 of **

[balance2]

<< is to

Each SimpleTransaction is a Transaction that is of TransactionType <> ‘xfr’.

Each TransferTransaction is a Transaction that is of TransactionType ‘xfr’.

[account1]

[account2]

{0..}

{> 0}

{0..}

...is paid to...on...

Money
Amount

Company

Date

[date]

is kept. For example, a history of payments made to companies might need to be re-

tained for at least 2 years. This constraint might be expressed as follows. We assume

here the existence of functions such as today and various operations on date values.

Context: MoneyAmount is paid to Company on Date
For each fact deleted
needed before: the date < today – 2 years

 Fig. 13. A dynamic constraint for deleting instances from the payment fact type

7 Conclusion

This paper proposed an extension to ORM supporting purely declarative specification

of dynamic rules restricted to single-step transactions, using syntax designed to be

easily validated by non-technical domain experts. These dynamic rules specify an

elementary transaction type indicating which kind of object or fact is being added, de-

leted or updated, any pre-conditions relevant to the transaction, and the relationship

between the new state and the old state. By collaborating with other researchers in the

ORM community, we intend to incorporate the identified rule patterns with enhance-

ments to previous work on ORM textual languages to provide a formal grammar for a

standard textual language for ORM, intended to express static and dynamic rules

(constraints and derivations), as well as conceptual queries.

Other future research may be directed at adding actual operations to the ORM-

language, explicitly modeling single-step transactions as well as other dynamic rules,

which may be alethic or deontic [12]. We also plan to extend the NORMA tool to

generate code from dynamic rules. In this context, we hope to provide translations of

our dynamic rules to the UML/OCL framework, where our declaration of dynamic

rules would be closer to the business level of modeling, and the resulting translation

to UML/OCL would be closer to the specification level of the software engineer.

Acknowledgement. This paper benefited from discussion with Matt Curland.

References

1. Bakema, G., Zwart, J. & van der Lek, H. 2000, Fully Communication Oriented Informa-

tion Modelling, Ten Hagen Stam, The Netherlands.

2. de Brock, E. O. 2000, „A General Treatment of Dynamic Integrity Constraints‟. Data and

Knowledge Engineering, 32(3): 223-246.

3. Bruza, P. D. & van der Weide, Th. P 1989, „The Semantics of TRIDL‟, Technical Report

89-17, Department of Information Systems, University of Nijmegen.

4. Chen, P. P. 1976, „The entity-relationship model—towards a unified view of data‟. ACM

Transactions on Database Systems, 1(1), pp. 9 36.

5. Chomicki, J. 1992, „History-less Checking of Dynamic Integrity Constraints‟, ICDE 1992:

557-64.

6. Embley. D. W. 1998, Object Database Development, Addison-Wesley.

7. Falkenberg, E. D. & van der Weide, Th. P. 1988, „Formal Description of the TOP Model‟.

Technical Report 88-01, Department of Information Systems, University of Nijmegen.

http://www.informatik.uni-trier.de/~ley/db/journals/dke/dke32.html#Brock00
http://www.informatik.uni-trier.de/~ley/db/journals/dke/dke32.html#Brock00
http://www.informatik.uni-trier.de/~ley/db/journals/dke/dke32.html#Brock00
http://www.niii.kun.nl/~tvdw
http://www.niii.kun.nl/~tvdw

8. Halpin, T. 2001, Information Modeling and Relational Databases, Morgan Kaufmann,

San Francisco.

9. Halpin, T. 2004, „Business Rule Verbalization‟, Information Systems Technology and its

Applications, Proc. ISTA-2004, (eds Doroshenko, A., Halpin, T. Liddle, S. & Mayr, H),

Salt Lake City, Lec. Notes in Informatics, vol. P-48, pp. 39-52.

10. Halpin, T. 2005, „Information Modeling in UML and ORM: A Comparison‟, Encyclope-

dia of Information Science and Technology, vol. 3, ed. M. Khosrow-Pour, Idea Publishing

Group, Hershey PA, USA, pp. 1471-5.

11. Halpin, T. 2005, „ORM 2‟, On the Move to Meaningful Internet Systems 2005: OTM 2005

Workshops, eds R. Meersman, Z. Tari, et al., Cyprus. Springer LNCS 3762, pp 676-87.

12. Halpin, T. 2006, „Business Rule Modality‟, Proc. CAiSE’06 Workshops, eds T, Latour &

M. Petit, Namur University Press, pp. 383-94.

13. Halpin, T. 2006, „ORM/NIAM Object-Role Modeling‟, Handbook on Information Systems

Architectures, 2nd edn, eds P. Bernus, K. Mertins & G. Schmidt, Springer, Heidelberg, pp.

81-103.

14. Halpin, T. & Wagner, G. 2003, „Modeling Reactive Behavior in ORM‟. Conceptual Mod-

eling – ER2003, Proc. 22nd ER Conference, Chicago, October 2003, Springer LNCS.

15. ter Hofstede, A. H. M. 1993, „Information Modelling in Data Intensive Domains‟, PhD

thesis, University of Nijmegen.

16. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, „Formal definition of

a conceptual language for the description and manipulation of information models‟, In-

formation Systems, vol. 18, no. 7, pp. 489-523.

17. Lipeck, U. W. 1990, „Transformation of Dynamic Integrity Constraints into Transaction

Specifications‟, Theor. Comput. Sci. 76(1): 115-142.

18. Object Management Group 2003, UML 2.0 Superstructure Specification. Online at:

www.omg.org/uml.

19. Object Management Group 2005, UML OCL 2.0 Specification. Online at:

http://www.omg.org/docs/ptc/05-06-06.pdf.

20. Olivé, A. 2003, „Integrity Constraints Definition in Object-Oriented Conceptual Modeling

Languages‟, Proc. ER2003, Springer LNCS, pp. 349-362.

21. Paton, N. W. & Díaz, O. 1999, „Active Database Systems‟, ACM Computing Surveys,

31(1): 63-103.

22. Proper, H. A. 1994, „A Theory for Conceptual Modeling of Evolving Application Do-

mains‟, PhD thesis, University of Nijmegen.

23. Proper, H. A., Hoppenbrouwers, S. J. B. A., & Weide, th. P. van der 2005, „A Fact-

Oriented Approach to Activity Modeling‟, On the Move to Meaningful Internet Systems

2005: OTM 2005 Workshops, eds R. Meersman, Z. Tari, P. Herrero et al., Cyprus. Sprin-

ger LNCS 3762, pp 666-75.

24. Theodoulidis C., Loucopoulos P. & Kopanas, V. 1992, „A Rule Oriented Formalism for

Active Temporal Databases‟, Next Generation CASE Tools, eds K. Lyytinen & V.-P Tah-

vanainen, IOS Press, Amsterdam.

25. Theodoulidis C., Wangler B., & Loucopoulos P. 1992, „The Entity-Relationship-Time

Model‟, Conceptual Modelling, Databases, and CASE: An Integrated View of Information

Systems Development, ch. 4, pp. 87-115, John Wiley & Sons.

26. Warmer, J. & Kleppe, A. 2003, The Object Constraint Language, 2nd Edition, Addison-

Wesley.

27. Wintraecken J. 1990, The NIAM Information Analysis Method: Theory and Practice,

Kluwer, Deventer, The Netherlands.

http://www.informatik.uni-trier.de/~ley/db/journals/tcs/tcs76.html#Lipeck90

