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Abstract: This paper proposes an extension to the Object-Role Modeling ap-

proach to support formal declaration of dynamic rules. Dynamic rules differ 

from static rules by pertaining to properties of state transitions, rather than to 

the states themselves. In this paper, application of dynamic rules is restricted to 

so-called single-step transactions, with an old state (the input of the transaction) 

and a new state (the direct result of that transaction). Such restricted rules are 

easier to formulate (and enforce) than a constraint applying historically over all 

possible states. In our approach, dynamic rules specify an elementary transac-

tion type indicating which kind of object or fact is being added, deleted or up-

dated, and (optionally) pre-conditions relevant to the transaction, followed by a 

condition stating the properties of the new state, including the relation between 

the new state and the old state. These dynamic rules are formulated in a syntax 

designed to be easily validated by non-technical domain experts.  

1 Introduction 

Object-Role Modeling (ORM) is a fact-oriented approach for modeling, transforming, 

and querying information in terms of the underlying facts of interest, where facts and 

rules may be verbalized in language readily understandable by non-technical users of 

the business domain. In contrast to Entity-Relationship (ER) modeling [4] and Uni-

fied Modeling Language (UML) class diagrams [18], ORM models are attribute-free, 

treating all facts as relationships (unary, binary, ternary etc.). ORM includes proce-

dures for mapping to attribute-based structures, such as those of ER or UML. We use 

the term “ORM” to include a number of closely related dialects, such as Natural lan-

guage Information Analysis Method (NIAM) [27] and Fully-Communication 

Oriented Information Modeling (FCO-IM) [1]. For a basic introduction to ORM see 

[13], for a thorough treatment see [8]. For a comparison of ORM with UML see [10].  

Business rules include constraints and derivation rules. Static rules apply to each 

state of the information system that models the business domain, and may be checked 

by examining each state individually (e.g. each person was born on at most one date). 

Dynamic rules reference at least two states, which may be either successive (e.g. no 

employee may be demoted in rank) or separated by some period (e.g. invoices ought 

to be paid within 30 days of being issued). While ORM provides richer graphic sup-

port for static rules than ER or UML provide, ORM as yet cannot match UML‟s sup-

port for dynamic rules.  



Since the 1980s, many extensions to ORM have been proposed to model temporal 

aspects and processes. The TOP model [7] allows fact types to be qualified by a tem-

poral dimension and granularity. TRIDL [3] includes time operators and action se-

mantics, but not dynamic constraints. LISA-D [16] supports basic updates. Task 

structures and task transactions model various processes [15], with formal grounding 

in process algebra. EVORM [22] formalizes first and second order evolution of in-

formation systems. Some explorations have been made to address reaction rules [e.g. 

14], and some proposals suggest deriving activity models from ORM models ([23]). 

Some fact-based approaches that share similarities with ORM have developed deep 

support for modeling system dynamics. For example, the CRL language in 

TEMPORA enables various constraints, derivations and actions to be formulated on 

Entity-Relationship-Time (ERT) models [24, 25], and the OSM method includes both 

graphical and textual specification of state nets and object interactions [6]. 

Various attribute-based methods such as UML and some extensions of ER incorpo-

rate dynamic modeling via diagrams (e.g. UML state charts and activity diagrams). 

For textual specification of dynamic rules, the most popular approach is the Object 

Constraint Language (OCL) [19, 26], but the OCL syntax is often too mathematical 

for validation by non-technical domain experts. Olivé suggests an extension to UML 

to specify temporal constraints, but this is limited to rules about creation of objects 

[20]. Substantial research has been carried out in providing logical formalizations for 

dynamic rules, typically using temporal logics or Event-Condition-Action (ECA) 

formalisms (e.g. de Brock [2], Lipeck [17], Chomicki [5], and Paton & Díaz [21]). 

Many works also describe how to implement dynamic rules in software systems. 

However, to our knowledge, no one has yet provided a purely declarative means to 

formulate dynamic constraints in a textual syntax suitable for non-technical users. 

This paper provides a first step towards such support for dynamic rules in ORM by 

addressing single-step transactions, with an old state (the input of the transaction) and 

a new state (resulting from that transaction). Our dynamic rules specify an elementary 

transaction type indicating the kind of object or fact being added, deleted or updated, 

and (optionally) pre-conditions relevant to the transaction, followed by a condition on 

the new state, including its relation to the old state. These dynamic rules are formu-

lated in a syntax designed for easy validation by non-technical domain experts. Our 

aim is to identify basic rule patterns rather than provide a complete, formal grammar. 

The rest of this paper is structured as follows. Section 2 focuses on rules involving 

updates to a single role in a functional binary fact type. Section 3 extends the exam-

ples of Section 2 to show how history can be added. Section 4 examines rules involv-

ing the addition of instances of non-functional fact types. Section 5 discusses a more 

complex case involving derivation. Section 6 briefly discusses fact deletion. Section 7 

summarizes the main results, suggests topics for further research, and lists references. 

2 Updating Single-Valued Roles in a Functional Fact Type 

Our first sub-case is a functional (n:1 or 1:1) binary fact type. Fig. 1 shows a func-

tional fact type in ORM 2 notation [11], where role names may be displayed in square 

brackets and used to verbalize rules in attribute-style [9]. 
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Fig. 1. In each state, each employee has at most one salary 

Suppose a dynamic constraint requires that salaries of employees must not de-

crease. We show two alternative expressions for this constraint, using the reserved 

words old and new to refer to situations immediately before and after the transition. 
 

  (a) Context: Employee    (b) For each Employee,  

      new salary >= old salary      new salary >= old salary 
 

Here the context of the constraint is the object type Employee, and the elementary 

transaction updates the salary of the employee. The presence of the new and/or old 

keywords signals that the prospective transaction is an update (rather than an addition 

or deletion); and this all implies that the rule is applicable only when there is in fact 

an "old" marital status (of the same student) to update. The constraint is violated if 

and only if it evaluates to false (like SQL check-clauses). So if the employee had no 

prior salary, the inequality evaluates to unknown and hence is not violated. In this 

case we record only a “snapshot” of the current salary (i.e. no salary history) which 

allows a simple constraint structure. A later example considers salary history.  

Specification of Employee as the context is sufficient in this case because the fact 

type is n:1. While the rule may be specified in relational style, using a predicate read-

ing, an attribute style formulation using a role name is often more convenient. Each 

transaction is always considered to be isolated (serializable). 

Constraints of this kind are fairly common in business systems. Generalizing from 

the example above to any functional binary fact type of the form A R‟s B, with B‟s 

role name p (denoting the property or “attribute” of A being constrained), we obtain 

the constraint formulation pattern in Fig. 2, where  denotes the required relationship 

between the values of the property p after and before the transition. 

          
          Context: A  |  For each A, 

              new p  old p 

 

Fig. 2. General pattern for updating a named, single-valued role on n:1 and 1:1 relationships 

Our dynamic-constraint language should also be able to handle constraints that in-

volve a table of state-transitions. A simple example involves marital states: 

 

 

 

 

 

 

 

The matrix shows which updates to a given student's marital status are possible. There 

is no functional or deterministic relationship between an old state and a new state that 

From \ To Single Married Widowed Divorced 

Single 0 1 0 0 

Married 0 0 1 1 

Widowed 0 1 0 0 

Divorced 0 1 0 0 



Employee

MoneyAmount

[salary]

… was awarded … on ...

Date

can or cannot follow. One simple solution involves that sort of construct which, in 

programming languages, is commonly called a case or switch statement: 

 
Context: Student 
in case old status = 
 'single': new status = 'married' 
 'married':   new status in ('widowed', 'divorced') 
 'widowed': new status = 'married' 
 'divorced': new status = 'married' 
end cases 

 

Fig. 3. Updating the marital status of a student 

One may alternatively specify impossible transitions for any given case, e.g. the 

divorced case could be reworded as “new status not in ('single', 'divorced', 'widowed')”. To say 

the new status must not equal some value, one uses <> instead of =.  

We can generalize similar kinds of constraints in the manner shown in Fig. 4. In 

the constraint, B1, B2, B3, etc. represent possible Bs that may play role p.  
 
Context: A 
in case old p = 
  'B1':  new p in (B2, B3, …)  
  - - etc. 
end cases 

Fig. 4. General pattern for enumerated values 

3 Examples of historical facts  

Our earlier constraint that an employee's salary could not decrease required only a 

“snapshot” view of salary. We now extend this simple case by requiring a salary his-

tory (see Fig. 5). The new keyword is not required here because we add a fact rather 

than update an existing fact. We assume here the existence of a function previous that 

can return the existing salary most recently added for any specific employee. 

  
Context: Employee 
For each salary added 
if before: 
 Employee was awarded some salary on some Date 
then after: 
 salary >= previous salary 

Fig. 5. Salary example with history 

Returning to the specific example of recording a student's marital status, a similar 

extension to add a history of marital status values for each student is shown in Fig. 6.  
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Student

MaritalStatus

[status]

… acquired … on ...

Date

{‘single’,
 ‘married’,
 ‘widowed’,
 ‘divorced’}

Context: Student  
For each status added 
if before:  
 Student acquired some MaritalStatus on some Date 
then after:  
 in case previous status = 
  'single': status = 'married' 
  'married':   status in ('widowed', 'divorced') 
  'widowed':  status = 'married' 
  'divorced':   status = 'married' 
   end cases 

Fig. 6. Marital status example with history 

We generalize this example to a pattern for recording history of some kind of thing 

acquiring some property at some instant, as shown in Fig. 7.  

Context: A 
For each p added 
if before: 
  A acquired some B at some Tag 
then after: 
 in case previous p = 
  B1: p in (B2, B3, ...) 
  - -  etc 
 end cases 

Fig. 7. General pattern for enumerated values with history 

As before, B1, B2, etc. represent possible Bs that may play role p. “Tag” represents 

some value that consistently increases (or perhaps decreases) for a given A as new 

facts are added. Tag values equipped with an ordering criterion are isomorphic to a li-

nearly ordered time-stamping mechanism. Dates and times obviously fit this role, but 

so also do other kinds of sequenced identifiers such as “incident number”, “version 

number” or other kinds of sequenced identifiers. We assume that the Tag history is 

complete for each A (we add a new fact to a history of all previous facts of the same 

type for that A, and never add a fact that is “earlier” than some existing fact). 

The dynamic constraint above applies to a situation where new facts are added to 

an existing history. If we require a constraint on the addition of the first fact of this 

type for each object of type A, then we need a separate constraint without the “before” 

condition given above. For the first addition of a fact of this type, if we do not care 

about the role p added, then we do not need to specify the additional constraint. 

4 Adding Instances of a Non-functional Fact Type 

We now consider adding fact instances to a non-functional fact type (no single-role 

uniqueness constraint), such as the Seating occupies Table association in Fig. 8, which 

shows a model fragment extracted from a restaurant application. 
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Fig. 8. Fragment of an ORM schema about restaurant seatings 

 

A seating is the allocation of a party (of one or more customers) to one or more va-

cant tables. Each seating starts at some instant and eventually ends at some instant. 

The circled bars depict the external uniqueness constraints that when a seating starts 

or ends, any given table is assigned to at most one seating. The asterisked rule is a de-

rivation rule for the snapshot fact type Table is vacant. Notice that the model maintains a 

history of seatings (e.g. for each table we record all the seatings it was previously al-

located to). To ensure that no seatings that overlap in time occupy the same table, the 

following rather complex textual constraint could be added: 
 

 For each Seating1, Seating2: 
  if Seating1.startTime <= Seating2.startTime 

   and (Seating2.startTime <= Seating1.endTime or not exists Seating1.endTime) 
then no Table that is occupied by Seating1 is occupied by Seating2  

 

Instead of this static rule, if we ignore the possibility of people changing their 

tables during a seating, the user interface itself can ensure that only tables that are cur-

rently vacant may be selected for a seating (for multiple screens used in parallel, an 

appropriate locking mechanism is assumed). Fig. 9 shows the relevant schema frag-

ment and the dynamic rule that a table may be assigned to a seating only if it is vacant 

at that time. The context for the constraint is the fact type Seating occupies Table. The 

elementary transaction adds an instance of this fact type. The reserved words before 

and after denote the states just before and after the transaction, needed indicates the 

precondition is necessary for the fact addition to take place (not just for this con-

straint), and the is scoped to the transaction instance. 

 

 
Context: Seating occupies Table 
For each fact added 
needed before: the table is vacant 
after: the table is not vacant 

  Fig. 9. A dynamic constraint for adding instances to the seating fact type 

Note that the ability to specify a fact type for the context leads to a much more nat-

ural formulation than would be obtained if the context had to be specified as an object 

type or class, as is the case with OCL. Fig. 10 models the seating example in UML in 

less detail (e.g. UML has no graphic notation for uniqueness constraints on attributes). 
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Fig. 10. A UML class diagram for the seating example 

To specify in OCL the dynamic constraint that a table may be assigned to a seating 

only if it is vacant at that time, we could try to state this in the context of the Seating 

class using an operation addTable (taking a parameter t of type Table) thus: 
 

context Seating::addTable(t:Table) 

pre: (t.isVacant)  

post: not(t.isVacant) and (table  includes(t)) 
 

This however is incorrect OCL, because it introduces a side effect: the update op-

eration addTable(t: Table) updates not only an object from the class Seating, but also 

the value of the parameter t. If we use Table as the context, we may rephrase our con-

straint as “A seating can be allocated to a table only if that table is vacant”, and intro-

duce an update operation allocateSeating(s: Seating) within the class Table thus: 
 

context Table::allocateSeating(s: Seating) 

pre: isVacant  

post: not isVacant and (seating  includes(s)) 
 

This constraint, though free of side effects from the point of view of the Table 

class, is still arguably not free of side effects as seen from the Seating class, since in-

vocation of allocateSeating to some specific table t0 and seating s0 would result in the 

property “s0.table  includes(t0)” changing the value of s0. These side effects 

result from trying to specify the addition of a complete fact within the context of one 

specific class. A possible resolution is to introduce an auxiliary class C (e.g. repre-

senting the full model), associated with both the Seating and Table classes, as shown 

in Fig. 11. Addition of the fact “s0 occupies t0” could then be represented within the 

context of class C. This rather roundabout and artificial solution is needed in order to 

add complete facts simply because OCL requires that any rule context must be a class. 

 

 

 

 

 

 

 

Fig. 11. Introducing an artificial class to provide the context for a side-effect free rule 

5 A More Complex Case Involving Derivation 

Let us now consider the case of a transaction dealing with operations on one or more 

accounts (see Fig. 12). Accounts can be augmented by having a deposit or interest 

added, or they can be diminished by a fee charge or withdrawal. Simple transactions 



refer to an operation on one account only, while transfer transactions deal with two 

accounts, where a money amount is transferred from the first account to a second ac-

count. We record historical information of all transactions, from which the current ac-

count balances may be derived. We assume that an account exists prior to any transac-

tion on it, and that on the event that an account is opened, its balance is set to zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. An example involving historical and derived snapshot data 

We now use dynamic rules to describe a transition from an old state to a new state 

for both a simple and a transfer transaction. The order of the components is irrelevant.  
 

Context: Account         Context: SimpleTransaction 
For each instance added        For each instance added 
balance = 0           in case type = 

     'dep', 'int':  Transaction.balance1 = (old account1.balance + amount ) 
     'wdl', 'fee': Transaction.balance1 = (old account1.balance  - amount ) 
     end cases 
     new account1.balance = Transaction.balance1  

 

Context: TransferTransaction 
For each instance added 
balance1 = (old account1.balance – amount) and 
balance2 = (old account2.balance + amount) and 
new account1.balance= balance1 and 
new account2.balance= balance2 

6 Deleting Instances of a Non-functional Fact Type 

So far, all our example rules apply to either state-updates or fact-additions; we now 

briefly consider an example that applies to fact-deletions. A common situation in-

volves a constraint on the length of time that a certain history of events or entity states 

Account
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MoneyAmount
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yields balance1 of **
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[amount]

[type]
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has balance of **
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Simple
Transaction

Transfer
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MoneyAmount
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yields balance2 of **
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<< is to

Each SimpleTransaction is a Transaction that is of TransactionType <> ‘xfr’.

Each TransferTransaction is a Transaction that is of TransactionType ‘xfr’.

[account1]

[account2]

{0..}

{> 0}

{0..}



...is paid to...on...

Money
Amount

Company

Date

[date]

is kept. For example, a history of payments made to companies might need to be re-

tained for at least 2 years. This constraint might be expressed as follows. We assume 

here the existence of functions such as today and various operations on date values. 

 
Context: MoneyAmount is paid to Company on Date 
For each fact deleted 
needed before: the date < today – 2 years 
 

  Fig. 13. A dynamic constraint for deleting instances from the payment fact type 

7 Conclusion 

This paper proposed an extension to ORM supporting purely declarative specification 

of dynamic rules restricted to single-step transactions, using syntax designed to be 

easily validated by non-technical domain experts. These dynamic rules specify an 

elementary transaction type indicating which kind of object or fact is being added, de-

leted or updated, any pre-conditions relevant to the transaction, and the relationship 

between the new state and the old state. By collaborating with other researchers in the 

ORM community, we intend to incorporate the identified rule patterns with enhance-

ments to previous work on ORM textual languages to provide a formal grammar for a 

standard textual language for ORM, intended to express static and dynamic rules 

(constraints and derivations), as well as conceptual queries. 

Other future research may be directed at adding actual operations to the ORM-

language, explicitly modeling single-step transactions as well as other dynamic rules, 

which may be alethic or deontic [12]. We also plan to extend the NORMA tool to 

generate code from dynamic rules. In this context, we hope to provide translations of 

our dynamic rules to the UML/OCL framework, where our declaration of dynamic 

rules would be closer to the business level of modeling, and the resulting translation 

to UML/OCL would be closer to the specification level of the software engineer. 
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