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Abstract: Two major problems in constructing data federations (for example, 
data warehouses and database federations) concern achieving and maintaining 
consistency and a uniform representation of the data on the global level of the 
federation. The first step in creating uniform representations of data is known as 
data extraction, whereas data reconciliation is concerned with resolving data in-
consistencies. Our approach to constructing a global conceptual schema as the 
result of integrating a collection of (semantically) heterogeneous component 
schemas is based on the concept of exact views. We show that a global schema 
constructed in terms of exact views integrates component schemas in such a 
way that the global schema is populated by exactly those instances allowed by 
the local schemas (and in special cases, also the other way around). In this 
sense, the global schema is equivalent to the set of component schemas from 
which the global schema is derived. This paper describes a modeling frame-
work for data federations based on the Object-Role Modeling (ORM) approach. 
In particular, we show that we can represent exact views within ORM, provid-
ing the means to resolve in a combined setting data extraction and reconcilia-
tion problems on the global level of the federation. 

1 Introduction 

Information systems composed of multiple, local systems that remain autonomous 
while sharing at least some of their information are called federated information sys-
tems. If the component systems are all databases, we speak of a federated database 
system ([33]). This paper addresses the situation where the component systems are 
pre-existing but are to interoperate in an integrated single framework. 

Information integration is a complex problem relevant in fields such as data re-
engineering, data warehousing, web information systems, and service oriented archi-
tecture. Data integration systems include a global schema and a set of local schemas. 
Three approaches to data integration include: global-as-view (GAV) in which the 
global schema is defined in terms of the local schemas; local-as-view (LAV) in which 
local schemas are defined as views over the global schema; and data exchange, where 
both local and global schemas are pre-existing and mappings between them are then 
defined (cf. [26]). An overview of data integration concentrating on LAV and GAV 
can be found in [24]. Papers [1, 15] focus on LAV, and [4, 5, 34] focus on GAV. Our 
paper focuses on GAV in the context of database federations. 

 



We address two major problems in this paper: semantic heterogeneity ([7, 24]), and 
the closed world assumption (CWA). Semantic heterogeneity arises when different 
meanings are assigned to shared data terms. The CWA assumes complete knowledge 
of relevant facts (propositions not stored in or derivable from the database are as-
sumed to be false). Following the steps of extracting and creating uniform representa-
tions of data,  the data reconciliation process is concerned with resolving data incon-
sistencies. GAV as a means to tackle semantic heterogeneity in database federations is 
described in [4, 5, 9, 34]. Paper [9] treats data integration under global integrity con-
straints; paper [34] concerns integration of local integrity constraints; Papers [4, 5] 
differ from [9] by also taking local integrity constraints into account, and by adopting 
exact views ([2, 4, 5]) instead of merely sound views ([9]). Exact views enable one to 
maintain the CWA on the global level, when the CWA is satisfied on the local levels. 
Paper [5] offers an improved algorithm for integrating local constraints on the global 
level, and also encompasses a far larger class of local constraints. 

The results in [4, 5] were described in terms of the Unified Modeling Language 
(UML) [28] and its Object Constraint Language (OCL) [29, 35] in the context of da-
tabase design [8,11, 12]. This paper, in contrast, describes a modeling framework for 
data federations based on the Object-Role Modeling (ORM) approach, also known as 
fact-oriented modeling. ORM is a conceptual approach for modeling, transforming, 
and querying information in terms of the underlying facts of interest, where facts and 
rules may be verbalized in language readily understandable by non-technical users of 
the business domain [26]. In contrast to Entity-Relationship (ER) modeling [10] and 
Unified Modeling Language (UML) class diagrams [28], ORM models are attribute-
free, treating all facts as relationships (unary, binary, ternary etc.). ORM includes pro-
cedures for mapping to attribute-based structures, such as those of ER or UML. While 
this paper uses the notation of second generation ORM (ORM 2 [20]), we use the 
term “ORM” to include a number of closely related dialects, such as Natural language 
Information Analysis Method (NIAM) and Fully-Communication Oriented Informa-
tion Modeling (FCO-IM). For a recent overview of ORM see [21], for a thorough 
treatment see [16]. For a comparison of ORM with UML see [18].  

In the specific context of modeling data integration, ORM offers advantages over 
UML by facilitating the representation of exact views via easily understood objecti-
fied associations, and enabling the resolution in a combined setting of data extraction 
and reconciliation problems on the global level of the federation. ORM models also 
offer greater semantic stability, assisting with sustainability of the integration result. 
Data warehouses can be seen as examples of a special kind of data federations, where 
one restricts oneself to query-only applications. Recent publications in the context of 
modeling data warehouses, indicate that sustainability is an essential issue in the ini-
tial phases of the design ([14, 27, 30,32]). 

The rest of this paper is structured as follows. Section 2 focuses on the problems of 
inconsistency and incompleteness. Section 3 considers semantic heterogeneity. Sec-
tion 4 examines the integrated model for our running example. Section 5 discusses in-
tegration by ψ-maps and exact views. Section 6 compares our ORM approach to ad-
dressing data federation problems with that of UML/OCL. Section 7 summarizes the 
main results, suggests topics for further research, and lists references. 



2 The Problems of Inconsistency and Incompleteness 

Schema integration has to satisfy certain completeness and consistency requirements 
in order to reflect correct semantics of the different local schemata on the global inte-
grated level [6]. In particular, each object on the local level should correspond to one 
object or object combination on the global level, and each global object should cor-
respond to exactly one combination of local objects. Both requirements can be satis-
fied only if there exists an adequate mapping from the federated database states to the 
component database states. In [4, 5] such a mapping was termed a ψ-map, where ψ 
(psi) is an acronym for preservation of system integrity. 

Constructing a ψ-map can be challenging. First of all, the process of data extrac-
tion (cf. [4]) can give rise to inconsistencies related to the ontologies (cf. [31]) of the 
component databases. Matters such as naming conflicts (e.g. homonyms and syn-
onyms), conflicts due to different underlying data types of attributes and/or scaling, 
and missing attributes all deal with differences in structure and semantics of the dif-
ferent local databases. By employing techniques such as renaming, conversion func-
tions, default values, and addition of suitable extra attributes once can construct a 
common data model in which these (quasi-)inconsistencies are resolved.  

A ψ-map, however, also has to ensure enforcement of both local integrity con-
straints (e.g. functional dependencies) on local database states, and global integrity 
constraints on federated database states. Hence, a ψ-map has to deal with the data re-
conciliation problem pertaining to the real inconsistencies due to conflicting integrity 
constraints. Following [4, 5, 34], we explain these inconsistencies using the terms lo-
cal and global understandability. 

In databases, transparency means that users need not see the internals of a data-
base, e.g. the location of data on a disk. In the context of federated schemata, global 
transparency requires that global users need not see the local schemata or the global 
schema. At the global level, global understandability demands that global transac-
tions (updates, queries) are accepted if they satisfy the global integrity constraints. 
Local understandability, on the other hand, demands that local transactions are ac-
cepted if the local integrity constraints are satisfied in the local component database. 
In [5] it was shown, given an arbitrary collection of component schemas, how to con-
struct a corresponding federated schema and a ψ-map linking the local schemas and 
the federated schema, thus ensuring global understandability. Local understandability, 
however, is generally not feasible due to the general character that federation con-
straints can have. Should there be no extra purely federated constraints on the global 
level, then local understandability can be ensured.  

A ψ-map can be used to define a so-called exact view. A global schema con-
structed in terms of exact views integrates component schemas in such a way that the 
global schema populates exactly those instances allowed by the local schemas (and in 
special cases, also conversely). In this sense, the global schema is equivalent to the set 
of component schemas from which the global schema is derived.  

In contrast to the UML/OCL approach in [4, 5], this paper uses ORM to represent 
exact views in terms of objectified relations, without needing to introduce (often 
complex) derived classes or association classes, as would be the case in UML. The re-
sulting ORM specification is easy to read, compared with OCL-style specifications.  



3 Component Databases and Semantic Heterogeneity 

Suppose we wish to integrate a customer relationship management (CRM) database 
and a sales database. ORM schemas for fragments of these databases are shown in 
Fig. 1. For simplicity, these schemas assume we are not interested in knowing which 
persons or employees are clients (so these are modelled as separate top-level types). 

The two schemas are related (e.g. the object type Client has the same extension in 
both). Our aim is to create a global schema that integrates the two local schemas. In 
practice, each local schema may be part of a much larger local schema, but we assume 
that the local schemas shown here depict the fragments that the autonomous local 
schemas are willing to share in the global federation.  

The problems faced when trying to integrate relational database schemas are well-
known ([7, 9, 32]). We treat these problems at a conceptual level using ORM, focus-
ing initially on semantic heterogeneity ([7, 24]), or differences in meaning attached to 
the shared data. We categorize this general problem into five main subproblems: ho-
monyms/synonyms, data conversion, default values, missing attributes, and subtyp-
ing. These five categories form the main problems in integrating data. We now shortly 
describe in informal terms how these problems can be tackled, and subsequently show 
how these problems can be treated in the ORM-framework. 

Conflicts due to homonyms are resolved by mapping two same name occurrences 
with different semantics to different names in the integrated model. For example, 
suppose that CRM.Salary means annual salary and Sales.salary means monthly salary. 
These must be given different names in the global schema. Synonyms are treated ana-
logously, by mapping two different names (with the same semantics) to one common 
global name. We use the abbreviations hom (syn) to indicate that we have applied 
this method to solve a particular case of homonym (synonym) conflicts.  
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Fig. 1. ORM schemas for local CRM and Sales databases 



Conflicts due to conversion arise when semantically related types are represented 
in different units or at a different granularity. For example, the two salary types have 
different temporal granularities (yearly and monthly). One solution is to convert each 
salary to a single standard salary in the global schema using a derivation rule for the 
conversion. For example, if we treat monthly salary as the standard the annual salary 
figures may be converted by multiplying by a factor 12 (in practice, the rule is more 
complex than this). Another kind of conversion can occur when the combination of 
types in one model has the same meaning as one type in another model. We use the 
abbreviation conv to indicate that we have applied a conversion method. 

Conflicts due to default values occur when an attribute in only one local schema 
could be added to the second local schema by using a suitable default value. For ex-
ample, we could add the fact type Employee works fulltime NrWeekdays to the Sales 
schema by stipulating a default value of 5 (indicating full-time employment) for the 
role played here by NrWeekdays. We use the abbreviation def to indicate that we 
have applied this method to solve a particular case of a default conflict. 

Conflicts due to differentiation occur when an identification scheme that works lo-
cally fails in the global text. For example, suppose that the CRM and sales depart-
ments each issue employee numbers that are identifying within their department, but 
not globally (e.g. a person with employee number ‘3’ in the CRM department might 
not be identical to a person with employee number ‘3’ in the Sales department). In the 
global schema, employee number is no longer identifying. Also if someone may work 
for both departments, they can have different employee numbers in each. One way to 
resolve this problem in the global schema is to use a combination of department and 
the local employee number to identify employees. Typically it helps to also introduce 
a simple, global identifier and retain the compound identifier as a secondary reference 
scheme. This also makes it easier to match individuals with different local identifiers. 
We use the abbreviation diff to indicate that we have applied this method to solve a 
particular case of a differentiation conflict.  

Resolution of such differentiation conflicts typically goes hand in hand with intro-
duction of appropriate subtypes, to retain the constraints that certain details are main-
tained only for certain types from a local schema. Applying the method of adding new 
subtypes in the integration process is indicated by sub. 

In the next section we illustrate how to apply the methods hom, syn, conv, def, 
diff and sub in the ORM-framework. 

4 Integrating the Local Schemas  

The Global1 ORM schema in Fig. 2 shows one way to integrate the local CRM and 
Sales schemas, which come from two different departments. It is possible for the 
same person to work for both departments, so the types CRM.Person and 
Sales.Employee overlap. We call the union of these types Global1.Employee, and in-
troduce a simple global identifier (id) for it. The schema provides one way of retain-
ing the local identification schemes for employees, by introducing the employment 
fact type, objectified as Employment, and declaring the external uniqueness constraint 
(circled bar) shown (so within a given department, employee numbers do identify). 
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Fig. 2. One way to model the global schema 

Assuming the predicates CRM.has_PhoneNr and Sales.has_PhoneNumber are ve-
rified by the domain expert to be synonymous, each is mapped to Employee.has_ 
PhoneNr. In this case, the source fact type has different constraints in the local sche-
mas (cf. [13]), so the global fact type is assigned the weakest constraint pattern (op-
tional, m:n) while the stronger local constraints are captured by formal textual con-
straints as shown. Assuming that it is useful to know both monthly and yearly salaries 
for both CRM and Sales employments, both salary fact types are included as shown, 
with the yearly salary derived. An alternative is to attach yearly salaries and annual 
salaries to subtypes CRM_Employee and Sales_Employee respectively. These sub-
types are introduced anyway, as each has specific roles as shown. 

As discussed earlier (def), an alternative to attaching the fulltime weekdays fact 
type to CRM_Employee is to lift it up to Employee, using a default of 5 placed on the 
role, assuming the default applies to all employees (if not, this is captured textually). 
Note that conceptual defaults are still in the process of being added to ORM 2. 

ORM 2 supports derived subtypes and asserted subtypes [22]. To illustrate these 
options, the CRM_Employee and Sales_Employee subtypes are derived (indicated by 
an asterisk and subtype definition), and the CRM_Client and Sales_Client subtypes 
are merely asserted. We assume that the domain expert has verified that ClientNr does 
provide a global identifier (unlike EmployeeNr). The rest of the schema should be 
self-explanatory. This solution is based on applying syn + diff + conv + sub. 
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Fig. 3. An alternative way to handle different global and local identification schemes 

The Global2 schema fragment in Fig. 3 shows another way to cater for the fact that 
employees may be identified within their local departments by their local employee 
number for that department. This notion of context-dependent reference was intro-
duced to ORM many years ago [16]. Underlying the subtyping relationships (which 
are meta-fact types) are implied ground-level fact types that enable instances to be 
equated (e.g. Employee with EmployeeId ‘123’ = CRM_Employee with CRM_EmployeeNr ‘246’ and 
Employee with EmployeeId ‘123’ = Sales_Employee with Sales_EmployeeNr ‘777’). 

Data extraction has been performed by providing a global schema in which the lo-
cal data coming from CRM and Sales can be uniformly represented, while data recon-
ciliation has been performed by resolving constraint conflicts by suitable use of diffe-
rentiation on the global level. Our argumentation is given in terms of an example, but 
the method we use in moving from local to global can easily be given in more general 
terms, as described in the following section. 

5 Integrating by ψ-maps and Exact Views 

Our strategy to integrate a collection of local schemas into a global schema is based 
on resolving five categories of problems: homonyms/synonyms, default values, con-
versions, differentiating roles, and subtyping. Each category has a general solution 
strategy, as summarized below. 

For hom, a LocalObject (with a role in the local schema) is renamed to  
GlobalObject, in order not to be confused with some Local Object (with a different 
meaning) having a relation with some other local entity. For syn, a LocalObject1 and 
LocalObject2 are renamed to GlobalObject. 

For conv, a LocalValue1 and LocalValue2 are renamed to GlobalValue, and the 
value of GlobalValue is derived (alternatively, both are retained and one derived from 
the other). For def, a LocalEntity1 gets some value of GlobalObject as a default value. 
For diff and sub, a LocalEntity corresponds to subtype GlobalDiff1 having some 
fixed default value of type GlobalValue2. In GlobalEntity, the combination of Glo-
balValue1 and GlobalValue2 is identifying. 

In retrospect, we see that we have applied the following principles to resolve inte-
gration anomalies. 

1. We construct a 1-1 (and sometimes) derived relation between corresponding 
roles on local and global sides. Such 1-1 relations are called ψ-maps. 

2. We ensure that all local role values are included in the ψ-map  



3. We ensure that all global roles values involved in the ψ-map are included in 
the objectification  

 
Following 1-3 above, the local role values are injected as corresponding role val-

ues. We then proceed by introducing suitable subtypes. The ψ-maps constitute 1-1 re-
lationships between local and global object sets, and in that sense a global object set 
can be seen as the result of a view (defined by the associated ψ-map) on the local ob-
ject set. Such views are called exact, because of the 1-1 nature of the ψ-map. Each 
subtype –on the global level-  constructed in such a manner results in an exact view 
on the corresponding original local entity type (e.g., CRM_Employee, together with 
its inherited supertype properties, offers an exact view of local entity type 
CRM.Person). 

 
The CWA and integration 
 
Since the global schema is based on exact views, each local object corresponds to ex-
actly one global object, and each global object corresponds to exactly one combina-
tion of local objects. Hence global understandability is guaranteed (cf. section 2), en-
tailing that if the local databases all satisfy the Closed World Assumption (CWA), the 
result also satisfies the CWA. This claim deserves a full formal proof, but due to 
space limitations such a proof is beyond the scope of this paper. 

6 Comparison with UML 

The solutions offered in [4, 5] were based on the UML/OCL framework, with heavy 
use of view-constructs in UML based on the work found in [3]. Views in UML are 
called derived classes (the term was introduced in [8]), and were first given a firm ba-
sis in [3] by employing OCL (cf. [35]). Database federations in [4, 5] are defined as 
certain derived classes (called exact views in [4, 5]) and rely heavily on (sometimes 
quite lengthy and complicated) OCL-specifications. We think that ORM schemas, as 
described in this paper, are more readable for defining data federations, since they do 
not assume the kind of mathematical sophistication necessary to grasp complex OCL-
specifications which are often needed to supplement the class diagrams corresponding 
to aspects of the kind of ORM schemas discussed in this paper, due to the ψ-maps in-
volved and the functional dependencies that have to be preserved in transforming 
from local to global.  

 
Sustainability 
 
Another advantage of ORM over UML is that its attribute-free style promotes seman-
tic stability. This entails that in an evolutionary setting (where data models can vary in 
time), an ORM model can be extended without consequences for applications (e.g. 
queries) that have been defined for earlier versions of the model. Re-modeling in 
UML, on the other hand, might involve rewriting an attribute to a class in combina-
tion with a corresponding association, clearly having consequences for existing appli-



cations on an earlier version of the model. Hence, sustainability of design is an issue 
here. Database federations are often subject to evolution: local databases may come 
and go, and flexible adaptive design is an important issue.  

7 Conclusion 

This paper addressed two major problems (data extraction and reconciliation) in con-
structing data federations concerning achieving and maintaining consistency and a 
uniform representation of the data on the global level of the federation. Our approach 
to constructing a global conceptual schema as the result of integrating a collection of 
(semantically) heterogeneous component schemas is based on the concept of exact 
views. We have shown that a global schema constructed in terms of exact views inte-
grates component schemas in such a way that the global schema populates exactly 
those instances allowed by the local schemas. In this sense, the global schema is 
equivalent to the set of component schemas from which the global schema is derived. 

We have described a modeling framework for data federations based on the Ob-
ject-Role Modeling (ORM) approach. In particular, we have shown that we can 
represent exact views within ORM, providing the means to resolve in a combined set-
ting data extraction and reconciliation problems on the global level of the federation.  

We note that [5] treats integration of a broader class of constraints than in this pa-
per. In [5] an algorithm has been developed to fully integrate not only structural, but 
also ad hoc constraints. It is the topic of further research to investigate transfer of 
these results offered in [5] to the ORM-framework. 
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