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Abstract

Flat graphical, conceptual modeling techniques are widely accepted as visually effective ways in
which to specify and communicate the conceptual data requirements of an information system. Concep-
tual schema diagrams provide modelers with a picture of the salient structures underlying the modeled
universe of discourse, in a form that can readily be understood by and communicated to users, program-
mers and managers. When complexity and size of applications increase, however, the success of these
techniques in terms of comprehensibility and communicability deteriorates rapidly.

This paper proposes a method to offset this deterioration, by adding abstraction layers to flat con-
ceptual schemas. We present an algorithm to recursively derive higher levels of abstraction from a given
(flat) conceptual schema. The driving force of this algorithm is a hierarchy of conceptual importance
among the elements of the universe of discourse.
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1 Introduction

Conceptual schemas play an important, and recognized role in the development life cycle of an information
system [28]. They serve both as a means by which the salient structures of the underlying universe of
discourse (UoD) can be captured, and as a communication tool among the designers, programmers, users
and managers [32]. Conceptual schema modeling techniques, such as Entity Relationship (ER) modeling
[1], [12] and Object Role Modeling (ORM) [17] are widely acknowledged as being visually effective ways
in which to specify and communicate the conceptual data requirements of an information system.

However, as database application requirements increase in size and complexity, the comprehensibility
and maintainability of the specification degrades rapidly [28]. Simsion identified the problem of repre-
senting large data models as ‘one of the most serious limitations of data modeling in practice’ [30]. It is
claimed in Feldman and Miller [13] that the ‘usefulness of any diagram is inversely proportional to the size
of the model depicted’. This problem, which has been referred to as theDatabase Comprehension Problem
[8], is shared by allflat data models. In the specification of aflat conceptual schema, each object type is
viewed at only one level of abstraction in a single diagram and all object types are considered to be of
equal importance within the application [7]. While this is satisfactory for small, academic examples, when

1Department of Computer Science, University of Queensland, Australia 4072
2Asymetrix Corporation, Bellevue WA, USA
3Cooperative Information Systems Research Centre, Faculty of Information Technology, Queensland University of Technology,

GPO Box 2434, Brisbane, 4001 Australia, E.Proper@acm.org

1



conceptual schemas of a moderate to large size are involved, this feature reduces the rate of comprehension
of the application.

The Database Comprehension Problem in flat data models has motivated several authors to try to find
successful methods by which to form abstractions on a given flat conceptual schema [8], [10], [13], [14],
[15], [26], [27], [28], [29], [31], [32], [33]. In 1983, Vermeir [32] described a number of abstraction
techniques includingviewpoint relative abstraction, which displays the portion of the schema within a
particular distance of a focal object type, and theabsolute abstraction hierarchy, which iteratively removes
non-key concepts from successive layers of abstraction.

An abstraction technique which is quite popular in the literature isEntity-Relationship Model Clus-
tering. An ER Model Cluster Diagramis ‘a hierarchy of successively more detailed Entity Relationship
diagrams, with a lower-level diagram appearing as a single entity type on the next higher level diagram’
[13]. Martin developed an ER clustering procedure based on 1:m relationship between entities, which is
simple, but rather arbitrary and judgmental [27]. ER model clustering was then applied to the Whitbread
Corporate Data Architecture in June 1983 in order to test the theory on a significant practical application.
As an outcome, in 1986, Feldman and Miller proposed a semi-algorithmic approach to ER model clustering
- one which still relies heavily on human direction and judgment.

In 1989, Carlson and Ji [8] proposed the Nested Entity Relationship (NER) model as an extension
to the multi-level ER clustering techniques of Feldman and Miller. NER supports traditional abstraction
techniques such as aggregation, generalization and association, as well as allowing ER diagrams at one
level to be abstracted into either complex entities or complex relationships at the next higher level. In that
same year, Teorey et. al. [31] introduced a set of ER model clustering rules. In this publication, entities
were grouped recursively, based on a list of grouping operations prioritized according to thecohesion(or
internal strength) among the entities involved. Once again, the algorithm proposed is largely based on
arbitrary human judgment. This work was taken further by Huffman and Zoeller in 1989, who confirmed
the feasibility of using a rule-based system to automate the ER clustering process of Teorey et. al [26].

A number of other abstraction techniques have been introduced in the years since. In 1991, Czejdo and
Embley proposed the management of large complex data models using views and a number of functions
to manipulate those views [10]. In [28] Moody proposed a representation scheme for abstraction based
on the organization of a street directory, using various levels of detail and intermap references and overlap
between scopes. A new abstraction mechanism for typed graphs, calledCaves, which allows the designer to
selectively ‘amplify or diminish’ parts of the conceptual model, was presented by Walko in 1992 [33]. The
techniques available through Caves include:Filtration, which removes extraneous details and constraints;
Perspectivewhich presents only the local vicinity of a selected focal point; andComprehension, which
folds the schema into a smaller version.

The common element of many of the abstraction techniques throughout the literature is the selection
of a set of important elements within a conceptual schema. Many different names have been given to these
objects which are considered to be of importance within the application domain, includingkey concepts
[32], major entity types[13], maximal objects[8] anddominant objects[26], [31]. In this paper (as in [6],
[7], [5]) we call these themajor object types. In order to briefly highlight the differences between these
similar concepts throughout the literature, we will refer to a small example conceptual schema shown in
figure 1 ([17] p. 402) (This diagram uses Object Role Modeling notation which is explained in section 2).

The abstraction techniques described by Vermeir in [32] are based on the notion of akey concept.
Key concepts are those objects within a conceptual schema which are considered to be of higher semantic
importance because they keep the graph connected. In the example in figure 1, therefore, the object types
‘Movie’, ‘Person’, ‘MoneyAmt’ and ‘Country’ would be considered, in [32], to be the key concepts. It is
quite apparent to a human, however, that ‘MoneyAmt’ is not one of the most semantically important object
types in the example Universe of Discourse. In fact, Vermeir himself observes that the definition of ‘key
concept’ is too simplistic, and many cases arise in which the abstractions produced are not intuitive [32].

Feldman and Miller consider the most important entity types to be those that appear in more than one
branch at any particular level of their clustering hierarchy and call these objectsmajor entity types[13].
Using Feldman and Miller’s algorithm [13], every object type in the schema (Movie, Title, Person, Mon-
eyAmt, Country, Date) would be classified as a candidate to be amajor entity type, after which human
intuition is required to narrow down the choice. Nested Entity Relationship models give a stronger the-
oretical foundation than previous multi-level ER approaches, though the concept ofmaximal objects[8].
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Figure 1: Example Conceptual Schema

However, no attempt is made to automate the selection ofmaximal objectsin a conceptual schema. Teorey
et al. [31] and Huffman and Zoeller [26] base their ER model clustering rules around what they call the
dominant objects. The onlydominant objectthat results from the automatic algorithm presented in [26] is
‘Movie’. Identifying other dominant objects appears to, once again, necessitate the use of human judgment.
While Huffman and Zoeller’s results were loosely comparable to those produced using human intuition,
it was acknowledged by the authors that some aspects of the clustering algorithm were too simplistic for
complex cases. Referring back to the conceptual schema in figure 1, it is most likely that a human would
intuitively decide that themajor object typesin this Universe of Discourse are ‘Movie’ and ‘Person’. None
of the algorithms reviewed in the literature arrive at this result automatically.

The first goal of this paper, therefore, is to formalize a method for the strictly automatic selection of
major object types. What sets our approach apart from others is that our approach considers the detailed
conceptual semantics hidden in the constraints and also the manner in which the facts within the domain
are verbalized. In particular, our approach utilizes the detailed constraint specifications and verbalizations
provided by Object Role Modeling. It is believed that a lot of the human intuition (conceptual semantics) is
contained in these constraints and verbalizations. We, therefore, claim that our approach more accurately
imitates human intuition than previous methods. As a second goal, this paper also aims to utilize these
selected major object types in an algorithm to derive abstractions for a flat conceptual schema.

We begin, in section 2, by introducing a formal description of Object Role Modeling, which will be used
as the foundation of the algorithms presented. Section 3 extends the semantics of Object Role Modeling by
introducing the notion of conceptualanchors, which are required for the detection of major object types.
An automated method for selecting anchors is presented. The selection of anchors is based on the semantics
of constraints defined on surrounding relationship types. The semantics of these constraints, in terms of
populations, allows us to make this selection. The notion of major object types and abstraction levels is
then introduced in section 4, together with a method for automatically determining them. Section section 5
illustrates how this automated abstraction process is performed on a small case study; and conclusions are
reached in section six.

2 Object Role Modeling

Object Role Modeling (ORM) views the world as a collection of objects which play roles and, unlike
Entity-Relationship Modeling, makes no initial use of theattribute construct. Every elementary type of
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fact which occurs between an object type in the Universe of Discourse (UoD) is verbalized and displayed
on a conceptual schema diagram. Object Role Modeling also allows a wide variety of data constraints to
be specified on the conceptual schema, including mandatory role, uniqueness, exclusion, equality, subset,
and occurrence frequency.

The high level of detail displayed on an ORM diagram allows Object Role Modeling to offer a cor-
respondingly high level of expressiveness. Unfortunately, this high level of detail also tends to promote
the degradation in comprehensibility and communicability in large conceptual schemas. An ER diagram,
through its use of attributes, can already be thought of as an abstraction (or summary) of a corresponding
ORM diagram. In this way, traditional Entity Relationship modeling can postpone the immediate effects of
theDatabase Comprehension Problemuntil a larger Universe of Discourse is required. It is not uncommon
in practice, however, for abstractions (or summaries) of ER diagrams themselves to be required. While
the scale of the problem, therefore, differs slightly between ORM and ER, theDatabase Comprehension
Problem, nonetheless, is universally shared by all flat modeling techniques.

For the purposes of this paper, we plan to consider the more detailed of the two most common data mod-
eling techniques (Object Role Modeling) and introduce a method to control the schema’s visual complexity
during the information system development. As argued before in [7], [5] and [17], an Entity Relationship
model can be considered comparable with the first of the abstraction levels on an ORM model.

The following subsections outline a formalization of some fundamental ORM structures and constraints
which will be required in sections 3 and 4 to describe our abstraction methods. The formalization of ORM
as presented in this article inherits a rich and well published history, full of constant refinements and
additions. The evolution of this particular ORM formalization started out from the PM/PSM version of
ORM [2], [20], [23]. More ‘modernized’ versions of ORM formalizations can be found in [20], [3] and the
most recent developments are discussed in [9]. Alternative formalizations can be found in [11] and [16].

While formalizations of ORM have been published before, this paper needs to describe the formaliza-
tion again in order to be self contained. In this formalization, we limit ourselves to syntactical issues only.
Issues regarding the associated semantics can be found in the referenced publications. Furthermore, the
formalization presented in this paper is based on a limited number of basic concepts to provide us with only
what is needed for the purposes of abstraction. For a detailed description of the methodology associated
with Object Role Modeling, refer to [17].

2.1 Information Structure

The cornerstone of a conceptual schema is formed by the so called ‘Information Structure’. This structure
is concerned with the object types and their interrelationships in the modeled Universe of Discourse. The
information structure of a conceptual schema is described in the following subsection. In doing so, we
assume that the reader has some basic working knowledge of the concepts underlying ORM or ER.

2.1.1 Flat Conceptual Modeling

In [9] an ORM version is proposed which extends ORM with both top-down abstraction mechanisms as
well as aspects from object oriented conceptual modeling techniques. The relation between that article and
this article is that here we are concerned with an algorithm to ’reverse engineer’ the abstraction layers from
an existing flat conceptual model, whereas [9] provides the extensions to ORM needed to add abstractions
in a top down way, which is necessarily a manual process. The output of the algorithm presented in this
article can indeed be seen as a 3-dimensional ORM model fitting the top-down abstraction framework.

As a warning to readers of [9], it should be noted that what we call a flat conceptual schema in this
article is in fact not a primitive, flat conceptual schema, as described in [9]. In this article our starting point
is a schema consisting of object types, relationship types, and objectified relationship types. Objectified
relationship types are also referred to asnested object types, and as its second name suggests, it already
introduces depth into a conceptual schema. It is well known that objectifications can be replaced by so-
called co-referenced object types. As an example of this, consider figure 2(a). This schema fragment is
equivalent to the fragment depicted in figure 2(b). Depending on the universe of discourse that is being
modeled, it may be more natural to use either one of the co-referenced or objectified representations. In
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the abstraction algorithms, the choice between a co-referenced object type and an objectified relationship
type is honored by treating them slightly differently.
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Figure 2: (a) Nested object type (b) Co-referenced object type

2.1.2 Typing Scheme

An ORM conceptual schema,CS , is presumed to consist of a set of conceptual types,TP . These types
are divided into three main subclasses. The first class is the set of object types,OB. Within this class
a subclass of value types,VL, can be distinguished. Instances from value types usually originate from
some underlying domain such as strings, natural numbers, audio, video, etc. A separate class of types,
the relationship typesRL, contain those types used to describe a relationship between one or more object
types. Those object types which are not value types are called non-value types:NV , OB�VL. In the
formalization used in this paper, we allow types to belong to both the set of object types, and the set of
relationship types. We refer to these later types asnested object typesor objectified relationship types.
Relationship types which are objectified do not belong to the set of value types. That is:

[O1] VL\RL = ?

These types also have a number of structural properties which we now consider.

2.1.3 Roles in Relationship Types

Each relationship type inRL contains a collection of roles. We refer to the set of all roles, in an ORM
conceptual schema, asRO. The roles inRO are distributed among the relationship types by the function
Roles : RL!}+(RO), which should provide a partition of the set of roles. (Note that}+(RO) yields all
non-empty subsets ofRO.) Each role has exactly one object type participating in it. This object type can
be obtained by applying the functionPlayer : RO!OB to the relevant role. If the participants of a set of
role is required, we use a generalization of this function,Players : }(RO)!}(RO), which is defined as:

Players(v) ,
�
Player(p)

�� p 2 v
	

To determine the relationship type to which a given role belongs, the inverse of theRoles function (Rel :
RO!RL) is used:

Rel(s) , p such thats 2 Roles(p)

In this formalization, the collection of roles contained in a relationship type is considered to have a pre-
defined default order. T his order, embedded in the verbalization of the relationship types, is provided by
the domain experts during the initial analysis phase. As such, thePosN function is one of the knowledge
sources from which we will try to mine the conceptual semantics hidden in the schema. The function
PosN : RO! INI + is used to assign a position to each role.

The predicateRels : }(RO)!}(RL) is a generalization of theRel function to sets of roles. It returns
all relationship types involved in a given set of roles:

Rels(v) ,
�
Rel(p)

�� p 2 v
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Similarly, the Roles function can be extended to accept a set of relationship types and return all roles
involved in any of the given relationship types (Roles : }(RL)!}(RO)):

Roles(v) ,
�
Roles(p)

�� p 2 v
	

To conveniently access the roles involved in the same relationship type as a given role, we define the
functionCoRoles : RO!}(RO), as:

CoRoles(v) , Roles(Rel(v))

Similarly toRoles andRel, CoRoles can be extended to perform the same operation on a set of roles:

CoRoles(v) , Roles(Rels(v))

If we require those roles in the same relationship type as a given role, excluding the given role, we use the
functionOtherRoles : RO!}(RO), which is defined as:

OtherRoles(p) , CoRoles(p)� fpg

2.1.4 Subtyping

The specialization relationship between a subtype and a supertype is captured by the relationshipSubOf �
OB �OB. The intuition is that whenx SubOfy, the population ofx is a definable subset of the population
of y. Each subtype hierarchy (defined bySubOf) corresponds to a directed acyclic graph which adheres
to the laws of transitivity and irreflexivity: The relationTop(x; y) is defined such thaty is a top ofx in
the associated subtype hierarchy. The hierarchies we consider must always have one single top; so we can
write Top(x) = y to refer to that unique top.

Given a set of object types in a subtype hierarchy, we can try to find the common supertypes in this
hierarchy that are closest to these object types. To this end, we first need to find all common supertypes.
This is done using the functionCommonSup : }(OB)!}(OB), which is defined as:

CommonSup(w) ,
�
x 2 OB

�� 8y2w [y SubOfx]
	

The next step is to select those common supertypes that are closest to the given set of object types. We,
therefore, introduce the notion of a lowest common supertype. The lowest common supertypes are those
common supertypes which do not have any other common supertype as a subtype. A set of object types
can actually have more than one lowest common supertype. The functionLowestCSup : }(OB)!}(OB)
is defined by:

LowestCSup(w) ,
�
x 2 CommonSup(w)

�� :9y2CommonSup(w) [y SubOfx]
	

Given an object typex in a subtype hierarchy, we can determine the set of subtypes of this object type.
This is done using the functionSubHierarchy : OB!}(OB), which is defined as:

SubHierarchy(x) ,
�
y
�� y SubOfx	

Consider, for example, the subtype hierarchy defined in figure 3. The supertypes of ‘Bicycle’ are ‘Car or
Bicycle’ and ‘Vehicle’. The supertypes of ‘Car’ are ‘Car or Bicycle’, ‘Motorized Vehicle’ and ‘Vehicle’.
The common supertypes (CommonSup) of ‘Car’ and ‘Bicycle’ are ‘Car or Bicycle’ and ‘Vehicle’ and the
lowest common supertype (LowestCSup) of ‘Car’ and ‘Bicycle’ is ‘Car or Bicycle’.

2.1.5 Type Relatedness

Intuitively, object types may, for several reasons, have values in common in some populations. Two types
are considered type related if their populations may share instances. Type relatedness, which we denote by
x � y, is a property held only by object types which are in the same subtype hierarchy. For more detailed
rules on type relatedness, refer to [18], [23].

Two roles are type related if their players are type related; so ifp; q 2 RO, then:

p � q , Player(p) � Player(q)
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Figure 3: Example of a Specialization Hierarchy

2.1.6 Complete Information Structure

We can now define the basic information structureIS of a conceptual schemaCS in terms of the following
components:

IS = hOB;VL;RL;RO;Roles;PosN; SubOf;Playeri

2.2 Conceptual Schema

Besides the information structure, a conceptual schema consists of constraints and derivation rules. For
this article, only a limited class of constraints is of interest. The constraint classes we discuss, together
with PosN, will be used as a source of information to decide which object types are major.

2.2.1 Mandatory Constraint

To specify the requirement that instances of a particular object type must always participate in at least one
of some set of roles, we use the mandatory constraint,Mand � }(RO) (also referred to as ‘total role
constraint’ in [23]). A mandatory constraint specifies that the union of the populations of the constrained
set of roles must equal the total population of their player(s). All roles contained in a mandatory constraint
must be type related. Therefore, we should have:

[O2] Mand(v)) 8p;q2v [p � q]

A basic rule for ORM models (as defined in [17]) states that every instance of an object type must participate
in at least one (fact type) role. In subsection 2.2.6 we will see that the only exception to this rule are the
so-called lazy object types. This results in a mandatory role being implied over each set of type related
roles. We identify the mandatory constraints which can be inferred in this way,InferMand � }(RO), with
the following derivation rule:

InferMand(V ) , 8p2V [p � q () q 2 V \FR] ^ V 6= ?

Note thatFR (the fact type roles) is the subset ofRO which is not used in the identification of any object
type in the schema. This is more formally defined later in the paper. For abstraction purposes, we only
consider those mandatory constraints which are not directly inferable.

2.2.2 Uniqueness Constraint

To introduce the concept of uniqueness, we use the predicateUnique � }(RO). A uniqueness constraint
requires each tuple in the projection of the join of the given roles (based on asserted join conditions) to
appear only once. A uniqueness constraint which involves roles from only one predicate is referred to as
an internal uniqueness constraint (IU ).

IU ,
�
Unique(v)

�� 8p;q2v [Rel(p) = Rel(q)]
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An internal uniqueness constraint simply specifies that each tuple instance for that predicate will have a
unique value combination for the constrained roles. If more than one predicate is involved in the uniqueness
constraint, then the constraint is classified as anexternaluniqueness constraint (EU).

EU ,
�
Unique(v)

�� 8p;q2v [Rel(p) 6= Rel(q)]
	

In this case, the predicates involved must bejoinable via common object types[19]. The general interpre-
tation of a uniqueness constraint is formulated in theUniquest Algorithmprovided in [34].

2.2.3 Primary Uniqueness Constraint

For every object type in the data schema, there must be some way in which to uniquely identify each
instance of that object type. In other words, we insist that every object-type isidentifiable.

To identify the instances of non-value types (NV), one uniqueness constraint must be selected to be
the primary means of identification for that object type. We call the set of such uniqueness constraints
‘PUnique’ and require thatPUnique(v) ) Unique(v). If this uniqueness constraint only involves one role,
the identification scheme is often collapsed into a reference mode for graphical convenience. The reference
mode of an object type is placed in brackets under the object type name. For example, figure 4(b) shows
the graphical abbreviation for the explicit identification scheme represented in figure 4(a).

Employee Employee#

is identified by

Employee
(#)

(a)

(b)

P

Figure 4: (a) Explicit identification scheme (b) Implicit identification scheme

The algorithms in this paper do not consider this graphical abbreviation. Instead, they presume that all
reference schemes are explicitly represented through uniqueness constraints. For more information about
primary uniqueness constraints refer to [17]. For more detailed formal requirements on identification in
ORM schemas, refer to [19], [23]. Every non-value object type must have exactly one primary identification
scheme. That is:

[O3] 8x2NV9!v [PUnique(v) ^ x 2 Identi�es(v)]

whereIdenti�es is defined as:

Identi�es(v) , SubHierarchy(LowestCSup(
�
Player(p)

�� p 2 OtherRoles(v)
	
))

The set of roles which are contained in the primary uniqueness constraint of a given non-value type is given
by PIdRoles : NV!}(RO) such that:

PIdRoles(x) ,
�
p
�� 9v [p 2 v ^ x 2 Identi�es(v)]

	
The set of predicates which are used to identify a given non-value type is given by the functionPIdRels :
NV!}(RL) such that:

PIdRels(x) ,
�
Rel(r)

�� r 2 PIdRoles(x)
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2.2.4 Occurrence Frequency Constraint

Uniqueness constraints are used to specify that instances of object types may play a certain combination of
roles at most once. Occurrence frequency constraints specify the more general condition that the number
of times that object instances may play a combination of roles is restricted to within a fixed range. The
condition that the instances of a set of roles� must occur at leastn and at mostm times is denoted by
Frequency(�; n;m). The semantics ofFrequency are fully defined in [19].

The functionMaxFreq returns the maximum number of times an object type instance may participate in
the given role.MaxFreq : RO! INI is defined as:

MaxFreq(r) ,

8><
>:

1 if Unique(frg)

m if Frequency(frg; n;m)

1 otherwise

Note that when taking set types, sequence types, etc. into consideration,Unique(�) should be replaced by
Unique(�)_ExUnique(�), whereExUnique(�) is the class ofexistensional uniqueness constraints. This later
constraint class is crucial in defining complex types such as set types [24], [25].

2.2.5 Set-comparison Constraints

Set-comparison constraints (which we will refer to as ‘set constraints’) are used to specify conditions which
apply between the population sets of two role sequences. IfX is a set, thenX+ denotes the set of sequences
built from elements ofX . For sequences, we presume that the operationz[i] returns thei-th element of
sequencez. Set(z) coerces a sequencez into a set of elements, so:

Set(z) ,
�
x
�� 9i [z[i] = x]

	
We usep 2 z as an abbreviation for9i [z[i] = p] while jzj denotes the length of sequencez. To determine
which position a particular element occupies in a given sequence, we use the functionPos. For sequences
where no two elements appear more than once in the sequence, we can definePos as:

Pos(p; z) , i such thatz[i] = p

The relationsSubset, Equality, Exclusion each apply to an ordered pair of role sequences (we do not consider
ann-ary form of exclusion constraint in this paper). The subset constraint (defined by relationSubset �
RO+�RO+ specifies that the population of the first role sequence is necessarily a subset of the population
of the second role sequence; the equality constraint (Equality � RO+�RO+) specifies that the population
of the first role sequence must be exactly equal to the population of the second role sequence; while the
exclusion constraint (Exclusion � RO+�RO+) specifies that the population of the first role sequence does
not contain any tuple which is in the population of the second role sequence. For a more formal definition
of these constraints, please refer to [19] and [23].

From their definitions, it is easy to infer an implied subset constraint between every optional role
and every mandatory role played by the same object type. Similarly it is possible to infer animplied
equality constraint between every mandatory role played by the same object type. We will not consider set
constraints which are inferable in this manner. That is:

8p;q:Subset(hpi;hqi)_Equality(hpi;hqi) [:Mand(q) ^ (Mand(p)) Player(p) SubOf Player(q))]

FromSubset, Equality andExclusion, we derive the more generic predicateSetCon using the following rules:

SC(v; w) , Subset(v; w) _ Equality(v; w) _ Exclusion(v; w)

SetCon(v; w) , SC(v; w) _ SC(w; v)

The underlying intuition is that ifSetCon(v; w), then some set constraint exists which involves the roles in
v andw.

From these rules, we can specify an even more generic definition forSetCon with only a single param-
eter. IfSetCon(v) then some set constraint exists which involves the roles inv.

SetCon(v) , 9w [SetCon(v; w)]
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2.2.6 Refinements to the Type Classification

Relationship types can now be partitioned into two important subclasses - thefact typesand thereference
types. Reference types (RF) are those relationship types which are used within the primary identification
scheme of some non-value type:

RF ,
�
Rel(p)

�� 9x2ab03nvty [p 2 PIdRoles(x)]
	

Fact types (FT ) are those relationship types which are not used within the primary identification scheme
of a basic entity type or subtype.

FT , RL�RF

The setFR � RO is used to refer to those roles which are contained within a fact type. That is:

FR ,
�
p 2 RO

�� Rel(p) 2 FT 	
Most object types can only be instantiated by instances which participate in some fact type (FT ). Instances
of lazy object types, however, can exist without participating in any fact type. We graphically represent
a lazy object typeby concatenating an exclamation mark to the end of the object type name (x!). As an
example, consider figure 5(a). Only countries which border another country can be recorded. In figure 5(b),
however, countries may be recorded even if they do not border (by land) any other country (e.g. Australia).

Country
(name)

borders on

(a)
Country !
(name)

borders on

(b)
Country
(name)

borders on

(c)

is known

Figure 5: ’Country’ object type represented as (a) non-lazy (b) lazy and (c) implied lazy

A lazy entity type’s behavior can be compared to that of an object type that mandatorily participates in
a unary (one roled) fact type which represents its existence (as depicted in figure 5(c)). For the purposes
of this paper, we consider a lazy entity type to be a graphical simplification to conveniently represent those
entity types which participate in a single, mandatory unary role. No special consideration is therefore
necessary for lazy entity types in the ensuing algorithms.

As stated before, other complex types like set types and sequence types are not discussed in full detail
in this article, however, we will briefly return to this issue.

2.3 Summary

A conceptual schemaCS can now be defined in terms of both the information structureIS and the basic
constraints which apply to this information structure.

CS = hIS ;Mand;Unique;PUnique; Frequency; Subset; Equality; Exclusioni

Conceptual schemas can have many other components, including ring constraints, subtype definitions,
derived fact types and other extraneous constraints. None of these, however, will be considered in this
paper, because they do not impact on the abstraction algorithms presented.

An example ORM conceptual schema can be found in figure 6. Entity types are depicted as named,
solid ellipses. Value types are shown as named, broken ellipses. Predicates are shown as named sequences
of role boxes, with the predicate name located in or beside the first role of the predicate. A nested object
type is shown as a frame around a predicate (e.g. ‘Request’). Arrow-tipped bars over one or more role
boxes indicate an internal uniqueness constraint over these roles. A black dot at the base of a connector
between an object type and a role indicates a mandatory constraint. Other constraints are represented as
defined in [17]. As an example, consider the conceptual schema depicted in figure 6. In this schema we
haveEmailAddress 2 VL, Preference 2 OB, andrequests 2 RL. This schema is used as the running example
throughout this article.
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Person
(name)

Preference
(nr)

Motel
(name)

Accomodation
Type (code)

MoneyAmt
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Motel Class
(code)

presents

authors

...rated...at...

requests
placement with

requests receives
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is from
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Paper
(#)
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Accepted
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is for

is for 1-3
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Request
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'double'}

PaperTitle
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PaperSlot
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(sq.m)+

is for
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starts at
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to

o ir

is in

has

is of

has

has has

is
located
in

has

has

{'A','B'}

each  Accepted Paper is a  Paper that  has Status 'accept'
each  LabOrLecRoom is a  Room that  is of RoomType in {'lab','lec')
each  Laboratory is a  Room that  is of RoomType 'lab'
each  Lecture Room is a  Room that  is of RoomType 'lec'

SUBTYPE DEFINITIONS

u

Figure 6: Academic Conference Example Application
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3 Anchoring Fact Types

In the following sections, we introduce a method by which we can view an ORM conceptual schema at
various levels of abstraction. At each subsequently higher level of abstraction, we show only the most
conceptually important (major) object types from the previous level, thereby creating a procedure that
generates an incremental summary of the schema based on conceptual relevance. To this end, we first
provide a mechanism by which the major object types in a given schema can be derived.

Throughout this paper, sets of conceptual objects from the current conceptual schemaCS will be de-
noted as belonging to a particular abstraction view by subscripting the set with the abstraction level. For
example,TP i refers to the set of types inCS which appear at abstraction leveli.

3.1 Definitions

To define the notion of amajor object type (relative to a particular abstraction leveli) we consider each
fact type individually and decide which object type(s) is (are) the most conceptually important participants
in this fact type. We say that a roleanchorsa fact type to its player at the current abstraction level, if that
player is (one of) the conceptually most important participants in the fact type. Conceptual importance
is, to a certain degree subjective. However, a reasonable (and often measurable) indicator of conceptual
importance is the proportion of the population of each object type that participates in the fact type.

The conceptual importance of rolep played by object typeX in fact type predicateF can be indicated
by: (

jPop(�pF )j
jPop(X)j

if
���q 2 FR �� Player(q) = X

	�� > 1

0 otherwise

wherePop is the population function and�pF indicates the projection on rolep of fact typeF . Consider,
for example, a fact type ‘Subjectis lectured byAcademic’. Suppose we know that a greater percentage of
‘Subjects’ are lectured by an ‘Academic’ than the percentage of ‘Academics’ who lecture a ‘Subject’; so:

jPop(�1(’Subjectis lectured byAcademic’))j
jPop(Subject)j

>
jPop(�2(’Subjectis lectured byAcademic’))j

jPop(Academic)j

It is obvious that, as a result, a particular ‘Subject’ is more likely to be participating in the fact type than a
particular ‘Academic’. It can also be observed that the fact type ‘Subjectis lectured byAcademic’ is more
likely to be accessed in relation to a particular ‘Subject’ than in relation to a particular ‘Academic’. We
therefore consider ‘Subject’ to be the more ’conceptually important participant’ and consider ‘Subjectis
lectured byAcademic’ to be anchored on the role played by ‘Subject’. This reasoning will, in general, only
be useful when we have access to a typical population of a conceptual schema. When only the conceptual
schema is available, we must rely on the conceptual constraints to derive such information from the type
level. This is the approach taken in this paper.

The fact that a given role is an anchor, at abstraction leveli, is captured by the predicate:Anchori �
FRi, whereFRi represents the fact type roles which are present at abstraction leveli. For convenience, we
also introduce the infix predicateAnchoredToi � FT i�OB, which indicates that the given role is anchored
to the given object type (at abstraction leveli):

r AnchoredToi x , Anchori(r) ^ Player(r) = x

When considering anchors, it is important to do so in their proper context, i.e. at a particular level of ab-
straction. For example a role which receives one hundred percent participation (i.e. a mandatory role), may
become implied mandatory at a higher level of abstraction and consequently lose ‘conceptual importance’.
As an example, consider the schema fragments in figure 7. In figure 7(a), ‘Subject’ mandatorily partic-
ipates in ‘EmployeeteachesSubject’ and ‘Department’ mandatorily participates in ‘Employeeworks for
Department’. Because these object types have one hundred percent participation, the corresponding roles
are therefore considered to be anchors in figure 7(a). In figure 7(b), which shows the next highest level
of abstraction, however, the same roles (played by ‘Subject’ and ‘Department’) are only mandatory by
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Employee
(#)

Department
(code)

Employee
Name

works for

teaches

has

Subject
(code)

uses

has

TextBook
(ISBN)

Department
Name

(a)

Employee
(#)

Department
(code)

works for

teaches

Subject
(code)

(b)

Figure 7: (a) Abstraction Leveln (b) Abstraction Leveln+ 1

implication. The roles played by ‘Subject’ and ‘Department’, therefore, lose their conceptual importance.

Anchors for fact types are selected by comparing the conceptual importance of the roles involved. To
this end, we introduce the notion of the weight of role, to indicate how firmly the role is attached to its
player:

Weighti : FRi! INI

The weight function is used as a rough indicator of both the importance of each role within a fact type
and of the relative importance of anchors between fact types. A role is considered to be an anchor if its
weight is the highest (or equal highest) weight of any role in the same fact type. An anchor can therefore
be defined in terms of the role weights, as such:

Anchori(r) , Weighti(r) > 0 ^Weighti(r) = max
�
Weighti(p)

�� p 2 CoRoles(r)
	

A corollary which ensues is:

Corollary 3.1 (Weighti(r) < Weighti(p) ^ p 2 CoRoles(r)) ) :Anchori(r)

The particular weight associated with each anchor is defined by theWeightSchema procedure, which is
introduced in the next subsections.

We consider a fact type predicate to be anchored (Anchoredi � FT i) if it contains a role which anchors
that fact type predicate to an object type:

Anchoredi(s) , 9r2Roles(s) [Anchori(r)]

or in other words, if the sum of the weights of each of its roles is greater than zero:

Corollary 3.2 Anchoredi(s) ,
P

r2Roles(s)

Weighti(r) > 0

We refer to an object type, which has at least one fact type anchored to it, as anAnchorPointi � OBi:

AnchorPointi(x) , 9r2FRi
[Player(r) � x ^ Anchori(r)]

For an abstraction leveli to be completely anchored, every fact type within the schema must be anchored:

AnchoredSchema(i) , 8s2FT i
[Anchoredi(s)]

This is the goal for this section.
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3.2 Weighting a Schema

The procedure calledWeightSchema, shown below, automatically assigns default weights to each fact-type
role, based on the given semantic constraints within the associated conceptual domain.Weight is a total
function. Since there will always be some subjective qualities that can not be captured by such an automatic
procedure, it is important that the user has the ability to override some automatic weighting decisions
that may be questionable. For this reason, and because the user will usually only want to express such
alternative preferences once, we allow our automatic abstraction procedure to take previous user-driven
weightings into account.

The automatic weighting is defined by a set of weighting rules that associate a weight to each fact type
role, based on the context of these roles. The weighting algorithm works by continuously trying to increase
the weight of the roles. This is a repetitive process, as increases of weights in one part of the schema may
lead to further increases in other parts of the schema.

We will refer to the weightings, which were explicitly generated by a user decision, through the func-
tion UserWeight : FR! INI . The weights that are derived automatically from the underlying schema are
provided by the functionAutoWeight : INI � FR! INI . This function is introduced in the next subsection
by a set of derivation rules. We employ the notationAutoWeighti(p) rather thanAutoWeight(i; p) because
of the fact the indexi is used as a label rather then carrying any specific semantics.

OnceWeightSchema has been automatically performed, the user would have a further opportunity to
alter theUserWeights by modifying the set of anchors produced in accordance with an appropriate set of
modification rules.

WeightSchema : CS !(FR! INI )
WeightSchema(CS) ,

VAR
Weight : FR! INI ;
p : FR;

BEGIN
f Initialize anchors g
FOR EACHp 2 FR DO
Weight(p) := UserWeight(p);

END;
WHILE 9i;p [AutoWeighti(p) > Weight(p)]
Weight(p) := max

�
AutoWeighti(p)

�� hi; pi 2 dom(AutoWeight)
	

;
END;
RETURNWeight;

END WeightSchema;

This algorithm will always terminate. From the condition on theWHILE loop we can see it terminates
if :9i;p [AutoWeighti(p) > Weight(p)]. In the next subsection we will also see that the maximum value
returned byAutoWeight is fixed to 10. From the body of theWHILE loop follows that we never reduce the
Weight of a role. This means that for any rolep onceWeight(p) � 10 we cannot find a rule labeledi such
thatAutoWeighti(p) > Weight(p). Which means the loop must eventually terminate.

3.3 Rules for Role Weighting

The following paragraphs describe each of the twelve rules that together defineAutoWeight. The resulting
weightings returned by these rules serve as a comparative guide, and should at some stage be refined based
on empirical testing in practical situations. The existing rules have been formulated after studying a number
of cases to observe the effect of particular constraints on the associated populations and on the conceptual
importance of surrounding object types.

Rule 1 – Mandatory Roles

All non-implied mandatory roles have, by definition, full participation by the population of the player(s).
Therefore, any fact type role which is involved in a mandatory role constraint (even if this is a disjunctive
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mandatory constraint) should be weighted,unlessthe mandatory role constraint is implied (as described by
InferMand). This is the only rule which can cause a fact type predicate to be anchored more than once.

AutoWeight1(p) , max

�nl
10
jvj

m ���Mand(v) ^ p 2 v ^ : InferMand(v)

o
[f0g

�
A role can be involved in a number of mandatory role constraints. The simplest case would be where
the role itself is mandatory, which would lead to a weight of 10. However, a role may be involved in a
disjunctive mandatory role. This means that the instances of the participating object type must play at least
one of the roles involved in the disjunctive mandatory role. In this latter case, the weight of 10 is ‘shared’
among the involved roles. As one role may be involved in a number of mandatory role constraints, we take
the weight to be the maximum of the possible weights that would follow from these involvements.

For example, rule 1 would cause each fact type in figure 8 to be anchored towards the non-implied
mandatory role played by Employee.

Employee
(emp#)

Employee
Name

Department
(code)

works for

has

Figure 8: All non-implied mandatory roles are weighted.

This rule can also be considered in the broader context of complex types like sequence types, bag types,
etc. We can now discuss why these complex types do not require special provisions in our algorithm. In
figure 9(a) we show an example of a set type: namely ‘Convoy’. A convoy consists of a set of ships, each
of which is commanded by a unique captain. Both a ship and its captain are each individually identified by
a name. A convoy, however, is identified by a set of ships.

(a)

(b)

Ship
(name)

Captain
(name)

is commanded by

Convoy

EU

is part of

Ship
(name)

Captain
(name)

is commanded by

Convoy

Figure 9: A convoy of ships modeled using (a) a complex set type and (b) elementary relationships

In figure 9(b), this set type is modeled in terms of more elementary relationships using the existensional
uniqueness constraint (represented by the encircledEU symbol) [25], [24]. The AutoWeight rules that we
are defining, can therefore be directly applied to the elementary representation of the complex types.

Rule 2 – Unary Roles

The player of the only role in a unary predicate must obviously be ‘the most important participant’ in that
predicate. All roles in unary predicates are therefore weighted.

It should be remembered that, for the purposes of this algorithm, lazy object types are treated like
non-lazy object types which play a mandatory unary predicate representing the existence of the instances.

AutoWeight2(p) , if CoRoles(p) = fpg then 10 else0
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Figure 10 shows an example subschema in which every unary predicate is anchored on its one role.

Employee
(emp#)

Project
(code)

works on

exists

is manager

Figure 10: All unary roles are anchored.

Rule 3 – Non-Leaf Object Types

A leaf facttype role (Leaf � FR) is one which has a player that plays only that fact type role. That is:

Leaf(p) , :9q2FR [Player(p) = Player(q) ^ Rel(p) 6= Rel(q)]

If only one role in a fact type is played by a non-leaf object type, then this role is considered ‘conceptually
important’ enough to be given a strong weighting.

AutoWeight3(p) , if Leaf(p) ^ 8q2OtherRoles(p) [Leaf(q)] then 9 else0

This rule as such is rather straightforward. The reason to assign only a weight of 9, instead of 10, is that
mandatory non-leaf roles are considered to be conceptually more important than optional non-leaf roles.

In the example subschema in figure 11, rule 3 would be fired, causing both fact types to be anchored
towards the Employee object type. Notice that ‘Room’ is actually a leaf object type because, while it
participates in three roles, it only participates in one fact type role. ‘Roomis in Building’ and ‘Roomhas
Room#’ are not considered in the weighting procedure as they are both reference types.

Room P

Building
(#)

Room#
Employee

(emp#)

Project
(code)

is located in

works on

is in

has

Figure 11: Non-leaf object types may indicate automatic anchorage.

Rule 4 – Smallest Maximum Frequency

The maximum frequency of the population of a role can be determined from one of two constraints. A
single role uniqueness constraint indicates that the role has a maximum frequency of one. Alternatively,
an occurrence frequency constraint often explicitly specifies the maximum frequency of a role. If exactly
one role within a fact type predicate has a smaller maximum frequency than all other roles in that fact type,
then this role should be anchored.

AutoWeight4(p) , if 8q2OtherRoles(p) [MaxFreq(p) < MaxFreq(q)] then 2 +

&
6p

MaxFreq(p)

'
else0

The closer the maximum frequency of a role is to 1, the higher the weighting. The maximumAutoWeight of
8 is applied in those cases in which a uniqueness constraint holds on the role, causingMaxFreq to be 1. If the
maximum frequency is higher then 1, theAutoWeight will become lower and lower, down to a mimumum
of 2. However, because increments inMaxFreq should have less effect if the frequency is already high, we
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have taken the division of the square root of theMaxFreq value. For example, the increment from aMaxFreq

of 8 to one of 9 will have less effect on theAutoWeight then an increment from 1 to 2. The result is a curve
that drops down quickly from a maximumWeight of 8, but starts to level out when it gets closer to 2.

The example in figure 12 depicts a subschema in which the fact type ‘Projectis managed byEmployee’
is anchored due to a uniqueness constraint, and the fact type ‘Employeeworks onProject for Duration’ is
anchored due to a frequency constraint.

Project
(code)Employee

(emp#)

is managed by

... works on ... for ...

Duration
(hrs)+

1..3

Figure 12: Roles with the smallest maximum frequency may be anchored.

Rule 5 – Non-Value Types

If exactly one role in a fact type is played by a non-value type, then the fact type should be anchored on
this role.

AutoWeight5(p) , if Player(p) 62 VL ^ 8q2OtherRoles(p) [Player(q) 2 VL] then 7 else0

The rationale behind this is that value types are by definition conceptually less important than non-value
types.

In the example shown in figure 13, rules 1 to 4 fail to determine an appropriate anchorage for either
fact type. Rule 5, however, triggers the obvious conclusion that both fact types should be anchored towards
‘Employee’.

Phone
Number

Employee
(#)

has at work

has at home

Figure 13: Roles played by non-value-types may become automatically anchored.

Rule 6 – Anchor Points

As we have already discussed, those object types which serve as anchor points to fact types are considered
to possess a relatively high conceptual importance. Therefore, if exactly one role in a given fact type is
played by an object type which became an anchorpoint via rules 1 to 5, the fact type is anchored on this
role. For this purpose we introduce the notion of a ‘heavy role’ as:

HeavyRole(p) , 9s:Weight(s)�7 [p � s]

The AutoWeight rule then becomes:

AutoWeight6(p) , if HeavyRole(p) ^ 8q2OtherRoles(p) [:HeavyRole(q)] then 6 else0

In the example subschema of figure 14, the uniqueness constraint on ‘Employeeis managed byProject’
causes rule 4 to anchor the upper fact type towards ‘Project’. Since ‘Project’ is now the only participant in
the ternary fact type which is an anchorpoint, the lower fact type is anchored on ‘Project’.

17



Project
(code)Employee

(emp#)

is managed by

... works on ... for ...

Duration
(hrs)+

Figure 14: Roles played by anchorpoints may become automatically anchored.

Rule 7 – Single-Role Set Constraints

If a fact type is involved in exactly one single-role set constraint (i.e. subset, equality or exclusion con-
straint), and the role at the other end of the set constraint is anchored, then the constrained role in the given
fact type is anchored.

AutoWeight7(p) , if 9s:Anchor(s) [SetCon(hsi; hpi)] ^ 8q2OtherRoles(p) [: SetCon(hqi)] then 5 else0

In figure 15, the fact type ‘Employeeis supervisor inProject’ is anchored to ‘Employee’ by rule 4, as a
result of the simple uniqueness constraint. Since the role played by ‘Employee’ in the ternary fact type is
connected to this anchored role via a single-role subset constraint, this role is consequently anchored by
rule 7.

Project
(code)Employee

(emp#)

is supervisor in

... works on ... for ...

Duration
(hrs)+

Figure 15: A role connected to an anchored role by single role set constraints is anchored.

It is important to consider the case in figure 16, in which the single role set constraints contradict
each other. In this case, rule 7 could not produce a determinant anchorage for the predicate ‘works on’.
We therefore ensure that this rule only fires on non-anchored fact types which are only involved in one
single-role set constraint.

Project
(code)

Employee
(emp#)

works on

is supervisor in

Date
(d/m/y)

has expected
completion on

Figure 16: Rule 7 does not consider cases in which a single-role set constraint contradicts another.

It is also important to realize why we chose not to require the contradicting set constraint to necessarily
have an anchor assigned. It would have been inadequate to require the following condition on the other
roles inp’s fact type:

8q2OtherRoles(p):9s:Anchor(s) [SetCon(hsi; hqi)]

We illustrate this, by considering the case shown in figure 17. If we assume that the above condition is
adequate, (i.e. that rule 7 is fired as long as no other role in the fact type participates in an anchored single
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role subset constraint), then two possible scenarios are possible for the schema fragment below. Firstly,
rule 7 could cause ‘PersonownsCar’ to be anchored towards ‘Person’; which would then cause ‘Person
has drivenCar’ to also be anchored towards ‘Person’. Alternatively, rule 7 could first cause ‘Personcaused
crash ofCar’ to be anchored towards ‘Car’; which would then cause ‘Personhas drivenCar’ to also
be anchored towards ‘Car’. As a result, ‘Personhas drivenCar’ could be anchored in either direction,
depending on the order in which the rule was fired.

Person
(tf#)

Car
(reg#)

has driven

owns

was last repaired by

caused crash

last owned

Figure 17: Rule 7 requires thatp’s fact type participates innoother single-role subset constraint.

For this reason, we only allow fact types to be anchored on a role,p, if no other role in its fact type is
involved in any kind of single-role set constraint (as defined inAutoWeight7(p)). The definition of rule 7
will, therefore anchor all fact types in figure 17, except for ‘Personhas drivenCar’.

Rule 8 – Multi-Role Set Constraints

If a fact type is involved in exactly one (possibly multi-role) set constraint (i.e. subset, equality or exclusion
constraint), and exactly one of the roles in the fact type is in the corresponding position within the set
constraint as an anchored role, then this role is itself anchored.

AutoWeight8(p) , if 9v;w:SetCon(v;w) [p 2 v ^ Anchor(w[Pos(p; v)]) ^ SingleSetCon(v; p)] then 4 else0

whereSingleSetCon(v; p) enforces the singularity of the set constraintv with respect to rolep:

SingleSetCon(v; p) , 8x:SetCon(x) [v 6= x) OtherRoles(p)\ Set(x) = ?]

In the example in figure 18, the fact type ‘Employeeis supervisor inProject’ is anchored to ‘Employee’ by
rule 4, as a result of the simple uniqueness constraint. Since the role played by ‘Employee’ in the ternary
fact type is connected to this anchored role via a multi-role subset constraint, this role is consequently
anchored by rule 8.

Project
(code)Employee

(emp#)

is supervisor in

... works on ... for ...

Duration
(hrs)+

Figure 18: Roles connected by multi-role set constraints are anchored.

Similarly to rule 7, it is important to consider the case in figure 19, in which the multi-role set constraints
contradict each other. In this case, rule 8 would not produce a determinant anchorage for the predicate
‘works on’. We therefore only use this rule on non-anchored fact types which are only involved in one
multi-role set constraint.
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Project
(code)

Employee
(emp#)

works on

is supervisor in

has primary
interest in

Figure 19: Rule 8 does not consider cases in which a multi-role set constraint contradicts another.

Rule 9 – Set Constraints and AnchorPoints

If there exists a non-implied set constraint in which one of the roles involved in the constraint is the only
involved role in its fact type to be played by an anchorpoint and the fact type of the role corresponding to
it in the other role sequence is not anchored, then this role should become an anchor. If a set constraintv

anchors a rolep in this sense, then we refer to this asAnchors(p; v):

Anchors(v; p) , p 2 v ^ AnchorPointi(Player(p))

The resulting AutoWeight rule is then:

AutoWeight9(p) ,

if 9v:SetCon(v)
�
Anchors(v; p) ^ 8r2OtherRoles(p) [:Anchors(r; v)] ^ SingleSetCon(v; p)

�
then 3 else0

For example, in figure 20, the firing of rule 1 causes ‘Project has budget ofMoneyAmt’ to be anchored
towards ‘Project’. Since ‘Project’, consequently, becomes the only player of a role involved in the subset
constraint to be an anchorpoint, rule 9 causes both of the other fact types to also be anchored towards
‘Project’.

Project
(code)Employee

(emp#)

is supervisor in

... works on ... for ...

Duration
(hrs)+

MoneyAmt
($)

has budget of

Figure 20: Roles played by major object types and involved in multi-role set constraints are anchored.

Rule 10 – Joining Roles of Set Constraints

For this rule, we consider each role sequence which is involved in a set constraint and which spans more
than one fact type. In these cases, a join condition must be specified (or inferred) to define the manner by
which the populations of the involved fact types are related. We call those roles which are involved in the
join condition of such a role sequence, the join roles for that role sequence, and define them through the
function:JoinRoles : RO+!}(RO), such that:

JoinRoles(v) ,
�
p 2 OtherRoles(v)

�� 9q;r2v;s2CoRoles(r) [Rel(q) 6= Rel(r) ^ Rel(p) = Rel(q) ^ p � s]
	

AutoWeight Rule 10 anchors those unanchored fact types, in which only one role is the join role for some
set constraint role sequence:

JoinSingleSetCon(p) , 9v:SetCon(v) [p 2 JoinRoles(v)]
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This join role becomes the anchor:

AutoWeight10(p) , if JoinSingleSetCon(p) ^ 8q2OtherRoles(p) [: JoinSingleSetCon(q)] then 2 else0

Figure 21 shows an example to which this rule is applicable. The ‘works for’ predicate is first anchored
to ‘Employee’ when Rule 1 (mandatory roles) is fired. The ‘involved in’ predicate is then anchored to
‘Employee’ by the activation of Rule 8 (multi-set constraint with single anchor). Lastly, rule 10 causes
the ‘sponsors’ predicate to be anchored to ‘Department’, since the role played by ‘Department’ is the one
which is used to join together thetargetrole sequence of the subset constraint.

Employee
(#)

Department
(code)

Project
(code)

works for

sponsors

involved in

Figure 21: Roles involved in the join condition of a multi-predicate set constraint role sequence are an-
chored.

Rule 11 – First Role of Set Constraints

If there is a multi-role, non-implied set constraint (i.e. subset, equality or exclusion constraint) and one
of the involved roles has the lowest sequence position within one of the constraint’s role sequence (for its
predicate), then this role should become an anchor.

AutoWeight11(p) ,

if 9v:SetCon(v)8s2CoRoles(p)\ Set(v) [AnchorPointi(Player(s))) Pos(p; v) � Pos(s; v)]

then 1 else0

This choice is based on the semantics which is derivable from the order in which the modeler chose to
initally verbalize the fact type. An example of such a situation is depicted in figure 22.

Project
(code)

Employee
(emp#)

is supervisor in

... was spent by ... on ...

Duration
(hrs)+

Figure 22: Roles which appear first in set-constraint role sequences are anchored.

Similarly to rules 7 and 8, it is important to consider the case in figure 23, in which the multi-role set
constraints contradict each other. In this case, rule 11 would not produce a determinant anchorage for the
predicate ‘works on’. We therefore only use this rule on non-anchored fact types which are only involved
in one multi-role set constraint. Note, that in figure 23 we denote the role sequence order by specifying the
sequence of role numbers that are involved at the ‘source’ of the set constraint.
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Project
(code)

Employee
(emp#)

works on

is supervisor in

has primary
interest in

<2,1>

<1,2>

Figure 23: Rule 11 does not consider cases in which a multi-role set constraint contradicts another.

Rule 12 – First Role of Internal Uniqueness Constraint

Any fact type, which is not already anchored, should be anchored, by default, on the first role that is
involved in an internal uniqueness constraint. This choice is based on the semantics which is derived from
the order in which the modeler chose to initially verbalize the fact type.

AutoWeight12(p) , if PosN(p) = min
�
PosN(q)

�� 9v [Unique(v) 2 IU ^ q 2 v]
	

then 1 else0

Figure 24 shows an example in which rule 12 is triggered.

Project
(code)

Employee
(emp#)

... works on ... for ...

Duration
(hrs)+

Figure 24: Roles which are positioned in the first ‘keyed’ position are anchored.

4 Deriving Abstraction Levels

When a conceptual schema is abstracted, each progressively higher level of abstraction includes all the
most conceptually important components from the previous level. To define an abstraction level, we must
therefore first select the major object types and major fact types. We refer to those major types which form
the foundation for an abstraction view at leveli asKERi (which will be defined formally below).

Once the kernel of an abstraction level has been calculated, there are still a number of steps which
must be performed before the abstraction is complete. Firstly, any fact type predicate in which every role is
played be a major object type is included in the abstraction. We do not include these predicates in the kernel
itself, because we do not want these fact types to effect the outcome of future abstraction levels. Secondly,
we include the identification scheme of all object types which appear in the abstraction. Finally, we restore
the connectivity of our abstracted conceptual schema. This involves retaining both the connectivity of
subtyping hierarchies, and the connectivity of non-type related object types.

The following subsections formally describe these steps in the abstraction process.

4.1 Major Types

In a conceptual schema at a particular level of abstraction (i), the set of object types which do not have
the lowest conceptual significance are referred to as the major object types (MajorOTi). Those object types
which are of least conceptual significance are referred to as minor. We identify the major object types as
the set of object types which have a higher total object type weight (OTWeight) than the minimum total
object type weight for the current schema level.
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Each object type also has an object type weight (OTWeight) associated with it at a particular abstraction
level. The object type weight represents the sum of the weights of those fact type roles which are anchored
to it; i.e.:

OTWeighti(x) ,
X

r:9y [AnchoredRole(r;y)^y�x]

Weighti(r)

whereAnchoredRole � FR � OB is true when the given fact type role is inKERi and is anchored to an
object type which is type related to the given object type; i.e.:

AnchoredRolei(r; x) , Player(r) � x ^ Anchori(r) ^ Rel(r) 2 KERi

An object type is considered to bemajorat a particular level of abstraction (MajorOT � OB) if its OTWeight

is greater than the minimum weight for object types in the kernel at that level. Formally,MajorOT is defined
as:

MajorOTi(x) , OTWeighti(x) > min
�
OTWeighti(y)

�� y 2 KERi

	
Themajor fact typesat a particular abstraction level (MajorFTi � FT ) are defined as those fact types which
bridge between more than one subtyping hierarchy and in which every participant is a major object type at
that level:

MajorFTi(x) , 8s2Roles(x) [MajorOTi(Player(s))] ^ 9s;t2Roles(x) [s 6� t]

4.2 Algorithm for Determining Next Abstraction Level

We refer to the set of component types and constraints included in the leveli abstraction view of conceptual
data schemaCS asCSi. In the level 1 conceptual schema,CS1 (often abbreviated toCS), all component
elements are present. Increasing the level of abstraction will never increase the number of populatable
types visible in the conceptual schema:

TP i � TP i+1

Of even greater importance, though, increasing the level of abstraction will necessary strictly decrease the
number of populatable types within the abstraction kernel:

KERi � KERi+1

As described previously, each progressively higher level of abstraction includes all the most conceptually
important components from the kernel of the previous level. For this reason, at each level of abstraction,
we include all the major fact types from the previous level, plus all the major object types which participate
in at least one of these major fact-types. Formally, we define the abstraction kernel at leveli+1 (KERi+1)
as:

KERi+1 ,
�
x
��MajorFTi(x)

	
[
�
Player(p)

��MajorFTi(Rel(p))
	

Notice that this definition does not necessarily include every major object type of one abstraction level in
the kernel of the next level. The kernel at a particular level of abstraction will only include those major
object types which participate in some fact type role contained in the kernel. This conforms to the standard
rules of conceptual schema design, as defined in [17].

The definition ofKER removes all objectified relationship types which neither participate in a major
fact-type, nor are major fact types themselves (as shown in figure 25, below).

It is interesting to compare the differences in the way objectified fact types and co-referenced object
types are treated. Consider the examples shown in figure 26.

In figure 26(a), the objectified fact type (identified by the participating A and B) is included in the
next higher level of abstraction, because it is considered to be amajor fact type. In figure 26(b), however,
the co-referenced object type (AB) is not included in the next higher level of abstraction, because it does
not participate in any fact types at this level. AB may, however, be added toCSi+1 if it is required for
connectivity. We justify the difference in treatment of objectified fact types and co-referenced object types
by the observation that an objectified fact type can, itself be thought of as a type of abstraction on a co-
referenced fact type, which must, itself be ‘unwrapped’ [9].
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4.3 Ring Fact Types

At this stage, the kernel only contains fact types which bridge between subtyping hierarchies. The kernel
does not retain those (ring) fact types for which every participant is a type-related object type because we
do not want these fact type to perpetually cause their player to be an anchor point. The user, however, is
probably interested in viewing all fact types which are played entirely by major object types at the previous
level. This includes the ring fact types. To this end, we therefore apply the procedureAddRingFTs to the
types in the kernel.

AddRingFTs : }(OB)!}(OB)
AddRingFTs(Types)
BEGIN

RETURNTypes [
�
r 2 FT

�� 8s;t2Player(r) [s; t 2 Types ^ s � t]
	

;
END AddRingFTs;

4.4 Object Type Identification Schemes

Since the identification scheme of an object type is often important for its understanding, we ensure that the
identification scheme of every object type is included in each abstraction level. To this end, we define that
relation,IsIdRel � RL �}(TP), which is true when the given relationship type is involved the primary
identification of some object type in the given set of types.

IsIdRel(r; z) , 9x2z [r 2 PIdRels(x)� z]

The functionIdenti�edSchema : }(TP)!}(TP) takes the types in the current abstraction level and adds
to them, those types that are required to identify the input types.

Identi�edSchema(Types)
VAR
r : FT ;

BEGIN
WHILE 9r [r 62 Types ^ IsIdRel(r;Types)] DO

LET r BE SUCH THATr 62 Types ^ IsIdRel(r;Types);
Types += frg[

�
Player(s)

�� s 2 Roles(r)
	

;
END WHILE;
RETURNTypes;

END Identi�edSchema.

It is interesting to consider the effect that this algorithm has on the subtyping hierarchies of the abstracted
schema. In figure 23, the only major object types inKERi, which participate in a major fact type, are C
and F. C and F are therefore the only object types to appear inKERi+1. Since C inherits its identification
from its (indirect) supertype A, however, A is included inIdenti�edSchema(KERi+1) as the player of C’s
identifying relationship type.

Notice that the subtyping arrows in the various schema fragments adapt automatically to the set of
object types included in the diagram. This is possible because of the fact that subtyping relationships are
inherently transitive, with only the non-implied arrows being displayed on the diagram.

4.5 Connectivity

Since we wish to retain the connectivity of our conceptual schema throughout each level of abstraction, we
must define the concept of connectivity. We begin by defining a connected path (PA) through a conceptual
schema. A path is a sequence of types in which each element (except the first) is either a relationship type
of which the previous conceptual type is a player, or is one of the object types which plays the previous
conceptual type. Note that a path does not necessarily define a unique traversal through a relationship type,
since an object type may play more than one role in the same relationship type.

PA ,
�
x 2 TP+

�� 81�i�jxj [Connected(x[i]; x[i+ 1])]
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Figure 27: The primary identification of subtype C is inherited from supertype A

whereConnected identifies whether or not the given conceptual types are connected (in that one participates
in the other):

Connected(y; z) , 9p2Roles(y) [Player(p) � z] _ 9p2Roles(z) [Player(p) � y]

The predicatePathBetween � PA � TP � TP , holds exactly when the given path exists, starting at con-
ceptual typex and ending at conceptual typey.

PathBetween(v; x; y) , v[1] = x ^ v[jvj] = y

ShortestPaths(x; y) returns the set of paths which start at typex and end at typey, which contain the least
number of conceptual types in between (ShortestPaths : TP � TP !}(PA)).

ShortestPaths(x; y) ,
�
v 2 PA

�� PathBetween(v; x; y) ^ jvj = min
�
jwj

�� PathBetween(w; x; y)		
Another type of connectivity which is useful to maintain is the connectivity of subtyping hierarchies. To
this end, each set of unconnected, type-related types inIdenti�edSchema(KERi+1 are reconnected via the
lowest common supertype which has its own identification scheme. The notion of alowest common iden-
tified supertypeis therefore introduced. A set of object types can actually have more than onelowest
common identified supertype, in the case in which the subtyping hierarchy forms a lattice. The function
LowestCIdObjs : }(TP)!}(TP) is defined on a set of type-related object types as:

LowestCIdObjs(w) ,
�
x 2 CommonIDSup(w)

�� :9y2CommonIDSup(w) [y SubOfx]
	

whereCommonIDSup(w),CommonSup(w)\ Players(OtherRoles(PIdRoles(w))). Notice that the only case
in which thelowest common identified supertypefor a set of object tyeps will be the same as thelowest
common supertype, defined previously, is when the lowest common supertype has an identification scheme
directly attached to it.

The functionConnectSchema is used to add those types which are required to connect the given set of
types by means of subtyping hierarchies and shortest paths.
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ConnectSchema : }(TP)!}(TP)
ConnectSchema(Types)

# PostCondition: 8x;y2Types [PathBetween(x; y)]
BEGIN
1: WHILE 9x;y2Types [x � y ^ :9z2Types [z 2 CommonSup(fx; yg)]] DO

Types += LowestCIdObjs(
�
s
�� s � x

	
);

2: WHILE 9x;y2Types [:PathBetween(x; y)] DO

Types +=
S

c2ShortestPath(x;v)

Set(c);

Types := Identi�edSchema(Types);

END 2;
END 1;
RETURNTypes;

END ConnectSchema;

The first loop (marked 1.) ensures that all type related object types are connected via a subtyping hierarchy
in the abstraction schema. The second loop (marked 2.) ensures that the non-type related object types
are connected via relationship types in the resulting set of types. Notice thatIdenti�edSchema is reapplied
duringConnectSchema to ensure that any newly added types are also identifiable in the abstraction schema.

Figure 28 shows an example in whichIdenti�edSchema(KERi+1) is disconnected, despite the fact
that its components contain type related object types. In order to connect the two schema fragments in
Identi�edSchema(KERi+1), ConnectSchema adds A to the set of included types. Object type A represents
the lowest common supertype of G and C which has its own identification scheme. In this case, C and G
have their own identification scheme. However, in order to retain the notion that the instances of C and
G come from a common domain, we include in the abstraction the lowest common supertype which is
directly attached to a unique identification scheme for this domain.

4.6 Complete Abstraction of Conceptual Schema

The complete set of abstraction levels for a given conceptual schema,CS, can now be defined. The leveli
abstraction view,CS i, of a given conceptual schema,CS, includes the types inKERi, the types required for
connectivity and identification, and all constraints from the original schema in which these included types
are involved. We, therefore, formally defineCSi as follows:

CS1 , hIS ;Mand;Unique;PUnique; Frequency; SetCon;Weighti

CSi , hIS i;Mandi;Uniquei;PUniquei; Frequencyi; SetConi;Weightii for i > 1

where

IS i , hTP i;ROi;Rolesi;PosN; SubOfi;Playeri

TP i , ConnectSchema(Identi�edSchema(AddRingFTs(KERi)))

ROi ,
�
p 2 RO

�� Rel(p) 2 TP i

	
SubOfi ,

�
hx; yi 2 TP i � TP i

�� x SubOfi�1 y
	

Mandi ,
�
x 2 }(ROi)

��Mand(x) ^ 9p2ROi
8q2x [p � q ^ p 62 x]

	
Uniquei ,

�
x 2 }(ROi)

�� Unique(x)	
Frequencyi ,

�
x 2 }(ROi)

�� Frequency(x)	
SetConi ,

�
hv; wi 2 RO+

i �RO
+
i

�� SetCon(v; w)	
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Figure 28: Connecting the kernel by means of the subtype hierarchy

4.7 Relation to Clusters

The definitions so-far allow us to take a flat ORM conceptual schema and derive a number of abstraction
layers for this flat ORM schema. Each of these layers is still essentially a flat subsection of the original
ORM schema. Therefore, we now introduce the glue that actually holds these layers of abstraction together.

The idea is to view each major object type as becoming the centre for a clustering of surrounding minor
object types. As a result, the object types in eachKERi are clusterings of types fromKERi�1. This idea of
using clustering as a binding mechanism for abstraction layers for ORM schemas was proposed previously
in [6], [7] and [5]. In [9] a possible formalization of the clustering mechanism is presented.

In this subsection, we show how to derive a clustering of minor object types for each major object type.
The presented style of clustering conforms to the requirements given in [9]. This means that when applying
the abstraction algorithm discussed in this article, together with the clustering mechanism presented below,
a three dimensional ORM schema results that is in line with the 3-Dimensional Conceptual Modeling
Kernel as proposed in [9].

The clustering mechanism is defined as a set of derivation rules. An actual clustering is given as a
functionCluster : INI � OB!}(TP). The intuition is that ifx 2 Cluster(i; y), then at abstraction leveli
typex has been grouped into the cluster surrounding object typey.

The first derivation rule clusters all fact types which have disappeared since the last level of abstraction
towards the object type to which they were anchored.

[CL1] Anchori�1(r) ^ Rel(r) 2 KER0
i ` Rel(r) 2 Cluster(i;Player(r))

whereKER0
i,KERi�1�KERi for i > 1.

Object types which participate in any relationship type included in a cluster should, obviously, be
included in the same cluster:

[CL2] x 2 Cluster(i; c) ^ y 2 Players(x) ` y 2 Cluster(i; c)

Please note that an object type could occur in more than one clustering if it is involved in relationship types
anchored to different major object types. As a result, the clustering is not a partition of the types.
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The following two rules are concerned with subtyping. If an object type in a type hierarchy is removed
from the kernel (i.e. it is inKER0

i), we must still cluster those fact types that were anchored to it. We anchor
such fact types towards the lowest supertype which remains in the kernel (LowestKernelSup).

[CL3] x 2 KER0
i ^ y LowestKernelSupx ^ r AnchoredToi�1 x ` Rel(r) 2 Cluster(i; y)

wherey LowestKernelSupx indicates thaty is the lowest supertype ofx which remains in the abstraction
kernel. That is:

y LowestKernelSupx , x SubOf y ^ y 2 KERi ^ :9z2KERi
[x SubOf z SubOfy]

If no supertype remains in the kernel, however, the relationship types anchored towards a disappearing
subtype can be clustered towards the nearest subtype which remains in the kernel.

[CL4] x 2 KER0
i ^ :9z [z LowestKernelSupx] ^ y HighestKernelSubx ^ r AnchoredToi�1 x

` Rel(r) 2 Cluster(i; y)

wherey HighestKernelSubx indicates thaty is the highest subtype ofx which remains in the abstraction
kernel. That is:

y HighestKernelSubx , y SubOfx ^ y 2 KERi ^ :9z2KERi
[y SubOf z SubOfx]

The remaining derivation rules are completeness rules on clusters. Clustered types are inherited between
layers of abstraction. So we have:

[CL5] x 2 Cluster(i; c) ` x 2 Cluster(i+ 1; c)

The reference types needed to identify any of the types in a cluster are also included:

[CL6] x 2 Cluster(i; c) ^ y 2 PIdRels(x) ` y 2 Cluster(i; c)

The above definition of cluster is a ‘maximally complete’ one. However, when displaying clusters to a
user, for example, one may chose to only show those clustered types which are part ofKER0

i. That is:

Cluster(i; x)�Cluster(i� 1; x)

It may also be decided to only show the clusters for those types which appear inKERi, and ignore the
clusters for those object types which were major at the previous level, but do not participate in a fact types
inKERi. Choices like this are up to the designer of the actual abstraction tool and often depend solely upon
the purpose for which the abstraction and clustering was created.

5 Case Study

Now that we have developed a theory for the creation of abstractions for a conceptual schema, it is time
to study the effect that such a mechanism has on an application example. Applying WeightSchema to the
conceptual schema shown in figure 6, we achieve the anchored schema shown below in figure 29. As in
previous examples, we have shaded the major object types and indicated the anchors by an arrowed role
connector line. For the purposes of our example application, we have also included theWeight assigned to
each anchor (e.g. ”.9.”). This will hopefully help the reader to retrace theAutoWeight rules that have been
fired to achieve this result.

ApplyingWeightSchema to our application example of figure 6 helps us identify the major object types
in the Universe of Discourse. In this case, they are ‘Motel’, ‘Committee’, ‘Institution’, ‘Country’, ‘Re-
quest’, ‘Person’, ‘Paper’, ‘Accepted Paper’, ‘Paper Slot’, ‘Room’, ‘Lab or Lecture Room’, ‘Lecture Room’
and ‘Laboratory’. This follows our own intuition of the most ‘conceptually important object types’.

It is important to notice that the relationship types ‘Roomis in Building’ and ‘RoomhasRoom#’ are not
anchored. This is because they are part of the primary identification scheme for ‘Room’, and are therefore
reference types. Only fact types are anchored.
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Among the anchored fact types are ‘PersonchairsCommittee’, which is anchored towards ‘Committee’.
The maximum frequency of 2 on the role played by ‘Committee’ causesAutoWeight rule 4 to assign a
Weight of 7 to this role. AutoWeight rule 8 is responsible for anchoring the fact type ‘Personpresents
Accepted Paper’ towards ‘Accepted Paper’, due to the fact that it is associated via a set constraint to a fact
type already anchored towards ‘Paper’.

Figure 30 shows the kernel types which form the foundation of the second level of abstraction for our
example conceptual schema. Notice that no ring fact types or identification schemes are included in the
kernel, and that the kernel is actually disconnected.

When we applyAddRingFTs, Identi�edSchema andConnectSchema to the kernel types in figure 30, add
the constraints that are still relevant and re-applyWeightSchema, we achieve the complete weighted, second
level abstraction schema shown infigure 31.

Notice that the major object types ofCS2 are ‘Request’, ‘Person’, ‘Institution’, ‘Paper’, ‘Accepted Pa-
per’ and ‘Paper Slot’. Because these object types are major at both the first and second level of abstraction,
we consider them to be more ‘conceptually important’ than those object types which are only major at the
first level of abstraction. In fact, we gauge an object type’s degree of majorness (DegreeMajor : OB! INI )
by calculating the highest level of abstraction at which that object type is major. We define:

DegreeMajor(x) , max(
�
i
��MajorOTi(x)

	
[f0g)

and we know that:
MajorOTi(x)) DegreeMajor(x) � i

For example, so far we know that:

DegreeMajor(`Rating0) = 0; DegreeMajor(`Motel0) = 1 andDegreeMajor(`Person0) � 2

Conceptual importance, or conceptual relevance (as indicated byDegreeMajor) plays a key role in a
number of areas. For example, in computer supported query formulation conceptual importance is used to
help select between alternative interpretations of queries ([4], [21], [22]).

It is important to understand how the schema abstraction in figure 30 was obtained. The object types
‘Room’, ‘Building’, ‘Room#’ and ‘Preference’ were all added by theIdenti�edSchema procedure, because
they are used in the identification of some kernel object type. The fact types ‘Lab or Lecture Roomis close
to Lab or Lecture Room’ and ‘Personrequests placement withPerson’ were added duringAddRingFTs, and
are not actually part ofKER2. This explains why we do not consider these fact types to be anchored.

There are a few interesting things to observe with respect to the anchorage ofCS2. Firstly, notice
that ‘Institution is located inCountry’, in contrast toCS1, is not anchored towards ‘Country’. This is
because at abstraction level 2, this role becomes implied mandatory. Secondly, the anchor on ‘Person
chairsCommittee’ was on the role played by ‘Committee’ inCS1, but has now moved to the role played by
‘Person’. This is because ‘Committee’ has become a leaf object type, causing the role played by ‘Person’
to gain a new weight of .9.. The fact type ‘PersonrefereesPaper’ also has a change in anchorage. In the
previous level of abstraction, it was anchored by Rule 12. Since it is now only associated with a single set
constraint, however, Rule 8 now triggers a weight of .4. on the role played by Paper. Lastly, notice that the
weight of the anchor on ‘PaperSlotusesLab or Lecture Room’ has increased from .8. to .9. because ‘Lab
or Lecture Room’ is now a leaf object type, triggering rule 3.

Figure 32 depicts a different view of our second level abstraction. In figure 32, we explicitly show the
clusterings that have occurred during the abstraction process. We have chosen to represent those object
types which are repeated in more than one cluster by surrounding them with a second ellipse; and have
shown only those constraints which are completely within or completely external to a clustering. It is
particularly interesting to observe the subtype clustering that has occurred around the object type ‘Lab or
Lecture Room’.

Taking things one step further, we can easily extend our results from figure 31 and 32 to show a corre-
sponding Entity Relationship (ER) representation of the application. Figure 33 shows this ER view. There
are many notations used for ER modeling. The one presented here uses rounded rectangles to represent
entities, named lines to represent relationship types, crow feet to indicate that the opposite entity can play
that role many times, a double rectangle to represent a ‘weak entity type’, and the letters ‘ID’ placed on its
identifying relationship. Attributes are not shown in this diagram.
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It is important to realize that the version of ER used above allows multi-valued and composite attributes.
Making this assumption allows us to achieve an intuitive overview of the original ORM diagram using ER
notation. We also allow relationships to have attributes. For example, the relationship ‘PersonratedPaper’
has the attribute ‘Rating’. Notice that relationships, such as this one, which have attributes do not appear in
the ORM abstraction since some of their participants are minor. Also note that ‘Request’ is represented as
a weak entity because its identification scheme involves both an attribute (‘Preference’) and a relationship
to an entity (‘Person’).

We now take the second level abstraction shown in figure 31 and abstract again. Figure 34 illustrates
the third level of abstraction,CS3. When we applyWeightSchema to CS3, the only changes in anchorage
that can be seen from the previous abstraction are in ‘Paper Slotis reserved forAccepted Paper’ (as ‘Paper
Slot’ becomes a leaf) and ‘Personis from Institution’ (as the role played by ‘Institution’ becomes implied
mandatory). We can now determine that the degree of majorness for ‘Institution’ and ‘Request’ is 2, and
for ‘Person’, ‘Paper’, ‘Accepted Paper’ and ‘Paper Slot’ is greater than, or equal to three.

The highest level of abstraction that can be reached for our example application is four. Figure 35
showsCS4. No higher level of abstraction can be reached, because there are no major fact types inCS4,
and therefore no conceptual types would be present at a higher level of abstraction. We can now conclude
that the most conceptually important object type in our Universe of Discourse is ‘Paper’ (and ‘Accepted
Paper’), with a degree of majorness equal to four.

6 Conclusions

In this article, we have presented an algorithm to derive layers of abstraction for a given flat conceptual
schema. The cornerstone of this abstraction algorithm is the notion of a major object type. We have
defined a prioritized set of derivation rules to assist in the selection of these major object types at each level
of abstraction. In comparison to other approaches which determine the major object types of a conceptual
schema, our approach considers more of the semantics that are hidden in the constraints and verbalizations.
Alternative approaches have instead relied more heavily on user input.
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Figure 32: Abstraction Level 2 showing the clusterings that have occurred
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The paper presents an iterative method for using the major object types to determine the kernel types
in each subsequent abstraction level. This kernel is then embellished with additional conceptual types to
enhance its comprehensibility, by incorporating identification schemes, ring predicates and connectivity.
The result of these processes, together with the constraints applicable to the included types, form the
resulting abstraction schema, which is demonstrated on a concrete case study in section 5.

In addition to this, we have also shown how the resulting layers of abstraction provide a three dimen-
sional view of the underlying flat conceptual schema, where object types at each level of abstraction can be
regarded as clusterings of object types from a lower level of abstraction.

Future plans include the tuning of priorities and weights in the derivation rules, which currently reflect
the intuition of the authors, to be based on empirical evidence gained through concrete testing. Because the
derivation rule approach taken in this paper allows a very modular approach to be taken in its implementa-
tion, the tuning of the priority and weighting values can be performed locally.

Other topics for future research include investigating how bottom up abstraction (as described in this
paper) and top down abstraction mechanisms can complement each other in a single conceptual schema
design procedure; and investigating how the algorithms presented in this paper impact on other types of
conceptual schema abstraction.
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