
Automated Verbalization for ORM 2

Terry Halpin and Matthew Curland

Neumont University, Utah, USA.
e-mail: {terry, Matthew.Curland}@neumont.edu

Abstract: In the analysis phase of information systems development, it is im-
portant to have the conceptual schema validated by the business domain expert,
to ensure that the schema accurately models the relevant aspects of the business
domain. An effective way to facilitate this validation is to verbalize the schema
in language that is both unambiguous and easily understood by the domain ex-
pert, who may be non-technical. Such verbalization has long been a major as-
pect of the Object-Role Modeling (ORM) approach, and basic support for ver-
balization exists in some ORM tools. Second generation ORM (ORM 2)
significantly extends the expressibility of ORM models (e.g. deontic modalities,
role value constraints, etc.). This paper discusses the automated support for ver-
balization of ORM 2 models provided by NORMA (Neumont ORM Architect),
an open-source software tool that facilitates entry, validation, and mapping of
ORM 2 models. NORMA supports verbalization patterns that go well beyond
previous verbalization work. The verbalization for individual elements in the
core ORM model is generated using an XSLT transform applied to an XML file
that succinctly identifies different verbalization patterns and describes how
phrases are combined to produce a readable verbalization. This paper discusses
the XML patterns used to describe ORM constraints and the tightly coupled fa-
cilities that enable end-users to easily adapt the verbalization phrases to cater
for different domain experts and native languages.

1 Introduction

To help ensure that a conceptual schema accurately models the universe of discourse,
the schema should be validated by a business domain expert. One effective way to fa-
cilitate this validation is to verbalize the schema in language that is both unambiguous
and easily understood by the domain expert, who may be non-technical. Various pro-
posals and tools exist to facilitate verbalization of business rules. The RuleSpeak sen-
tence templates [19] provide basic rule verbalization patterns, but their informal na-
ture obviates automatic transformation into executable code. The Object-oriented
Systems Analysis (OSA) model [6] supports high level, informal rules as well as for-
mal rules in a predicate calculus notation. Our approach instead uses a single lan-
guage that is both formal and conceptual, so that it can serve for communication and
validation with domain experts, as well as being executable. While its motivation is
similar to that of Common Logic Controlled English (CLCE) [20], its syntax is higher
level (e.g. pronouns are often used instead of variables), and it is designed for ease of
localization into different native languages.

 In industry, the most popular high level information modeling approaches are the
Entity-Relationship (ER) approach [5] and the Unified Modeling Language (UML)
[18], with dialects of Object-Role Modeling (ORM) [e.g. 2, 8] arguably being in third
place. The Barker ER approach [3] provides a discipline for relationship readings that
enables internal uniqueness and mandatory constraints to be verbalized. The NaLER
[1] approach extends this somewhat. However these approaches handle only a small
fragment of ORM constraints, are restricted to binary relationships, and are unsuited
to verbalizing fact instances. For textual expression of rules, UML advocates the use
of the Object Constraint Language (OCL) [21], but the syntax of this language is too
mathematical to enable reliable validation by non-technical business domain experts.

While many ORM languages exist for model specification, such as RIDL [16] and
LISA-D [15], few tools support automatic verbalization of ORM models. In the
1990s, one of the authors specified automated support for verbalization in ORM [7],
and later extended this for Microsoft’s ORM source model solution [14]. More re-
cently, we specified and implemented a substantially improved verbalization mecha-
nism for Neumont ORM Architect (NORMA) [17], an open-source tool for entering
second generation ORM (ORM 2) [10] models and transforming these to application
code. In addition to catering for new features in ORM 2, such as deontic modality,
role value and explicit subtyping constraints, we now support improved verbalization
in both positive and negative forms, including verbalization of the set-based nature of
spanning uniqueness constraints, and the absence of relevant constraints [9].

While preliminary versions of a few of our simpler verbalization patterns have ap-
peared in popular journals [e.g. 11], this paper is the first to discuss the detailed speci-
fication and implementation of the verbalization patterns. Section 2 provides a brief
overview of verbalization support in NORMA. Section 3 specifies some typical ver-
balization patterns. Section 4 details how the verbalization engine is implemented in
NORMA, including reasons for certain design decisions. Section 5 summarizes the
main results, suggests topics for further research, and lists references.

2 Overview of Verbalization in NORMA

Our verbalization language for ORM 2 was architected to meet five main design crite-
ria: expressibility, clarity, flexibility, localizability, and formality [9]. For expressibil-
ity reasons, both alethic and deontic modalities are supported [12]. Localization con-
cerns as well as support of natural verbalization for predicates of any arity dictated
use of mixfix predicates (e.g. … introduced … to … on …). For clarity and flexibility
reasons, constraint verbalizations may be presented in positive or negative form
(showing how to satisfy or violate the constraint), and may use relational or attribute
style (employing predicate readings or role names) or a mix of the two.

NORMA automatically verbalizes whatever part of the ORM model is currently
selected. As a simple example, Fig. 1 displays a NORMA screen shot showing the
automated verbalization in positive form of three fact types along with seven con-
straints (four alethic and three deontic). The mandatory and uniqueness constraints on
the top binary fact type in Fig. 1 are verbalized in positive form thus: Each Person was
born in exactly one Country.

Fig. 1. Screenshot of positive verbalization in NORMA

The absence of a uniqueness constraint on the right-hand role is verbalized: It is
possible that more than one Person was born in the same Country. Pressing the “−” button re-
displays the constraints in negative form: For each Person, it is impossible that that Person
was born in more than one Country; It is impossible that any Person was born in no Country.

The uniqueness constraint spanning both roles of the citizenship fact type specifies
both that the association is many:many, and that its population must be a set rather
than a bag of facts. These two aspects are verbalized separately: It is possible that more
than one Person is a citizen of the same Country and that the same Person is a citizen of more than
one Country; Each Person, Country combination occurs at most once in the population of Person is
a citizen of Country. The constraints discussed so far are alethic (they are logical or phy-
sical necessities and hence cannot be violated).

Deontic constraints (marked graphically with “o”) indicate rules that ought to be
obeyed but may possibly be violated. As a simple example of deontic verbalization,
the left deontic uniqueness constraint in Fig. 1 is verbalized in positive form thus: It is
obligatory that each Person is a husband of at most one Person. In negative form, we have: For
each Person1, it is forbidden that that Person1 is a husband of more than one Person2.

Forward hyphen binding treats the word before the hyphen as an adjective (e.g. a
uniqueness constraint on the first role of Person has first- GivenName verbalizes as “Each
Person has at most one first GivenName.”). As new features, NORMA also caters for re-
verse hyphen binding (e.g. Student has Preference -1 may be used instead of Student has
first- Preference) and predicates with front text (text before the first object placeholder).
For example, the uniqueness constraint on the first role of the birth of Person occurred in
Country verbalizes: For each Person, the birth of that Person occurred in at most one Country.

NORMA also caters for constraint types that are new in ORM 2, such as value
constraints on roles (e.g. The possible values of Person.height(cm) are [20..270].) and value
constraints involving open, continuous ranges (e.g. The possible values of NegativeTem-
perature(Celsius) are at least -273.15 and below 0.).

3 Sample Verbalization Patterns

In specifying the verbalization patterns for ORM 2, great care was taken to cover all
possible cases. In this section, we illustrate the style of high level specification pro-
vided as input to developers. The actual specification documents are vast, and will be
released as technical reports, e.g. [13]. Here we include just a tiny fragment from the
specification for verbalization of inclusive-or (ior, i.e. disjunctive mandatory) con-
straints for the sub-case of unary and/or binary and/or n-ary predicates.

The positive, alethic relational pattern for the case where each constrained role
starts a predicate reading is shown in Fig. 2. The object types are not necessarily dis-
tinct. Each predicate Ri has ni roles (ni ≥ 0) following the role played by A. So the
predicates may all be of different arity (unary upwards), and the object types may or
may not be the same. We verbalize all the binaries before all the unaries. The deontic
version prepends “it is obligatory that” to the positive form.

R2

R1

A

Rn

Ri

+ve: Each A R1 some B11 ... some B1n1
 or …

Rn some Bn1 … some Bnnn.

Move the unaries to the end.

B11 .. B1n1

For each unary Ri (1 ≤ i ≤ n) , the disjunct ends at Ri .

Bn1

 .. Bnnn

Fig. 2. Inclusive-or verbalization pattern when each constrained role starts a predicate reading

Examples: Each Partner became the husband of some Partner on some Date
or became the wife of some Partner on some Date.

 It is obligatory that
 each Vehicle was purchased from some BranchNr of some AutoRetailer or is rented.

If even one predicate in the previous case has front text, the pattern in Fig. 3 (some

constrained roles do not start a predicate reading) is used instead. If any Ri predicate
contains front text, this is included as part of the predicate reading. The positive, ale-
thic relational pattern is shown. The object types are not necessarily distinct. If A
plays more than one role in at least one of the Ri predicates, we subscript its instances
to distinguish them. Each predicate Ri may have ni roles (ni ≥ 0) plus the role played
by A.

R2

R1

A

Rn

Ri

+ve: For each A,
R1 some B11 ... that A … some B1n1
or …
or Rn some Bn1 … that A … some Bnnn.

Move the unaries to the end.

If A plays multiples roles in
a predicate, distinguish its
instances by subscripting.

B11 B1n1...

Bn1 Bnnn
...

For each unary Ri (1 ≤ i ≤ n) , use the disjunct that A Ri .

Fig. 3. Ior verbalization pattern when some constrained roles don’t start a predicate reading

Examples: For each Partner1,
on some Date that Partner1 became the husband of some Partner2
or on some Date that Partner1 became the wife of some Partner2.

 It is obligatory that for each Vehicle,
 some BranchNr of some AutoRetailer sold that Vehicle
 or that Vehicle is rented.

4 Implementation in NORMA

This section briefly outlines how verbalization support is implemented in NORMA.
Implementing a verbalization pattern needs care because the number of potential
variations is very high. A conservative estimate is that a full ORM verbalization im-
plementation coded by hand requires 10,000-15,000 lines of code, or about 6 person
months. Incremental maintenance costs would also be extremely high due to the size
of the code. To succeed both short term and long term, we decided to use a pattern-
driven generative approach to implement the code whenever possible.

The rules for verbalization of a constraint pattern are constant, but the actual text
used for different parts of the verbalization depends on environment-specific factors.

1. Although our reference implementation uses English, verbalization in other lan-
guages should incur only incremental implementation costs.

2. The same verbalization engine should be able to render different output formats.
NORMA’s verbalization window will display html, but we may want different html
for a report view, and plain text in other views.

3. Personal verbalization preferences are also an environment factor. For example,
by default we do not show the implied “It is necessary that” before positive alethic
constraints. However, any skilled user should be able to choose to see the explicit
form, or rephrase it (e.g. “The following condition is necessary: ”).

4. A skilled user should be able to easily adapt the verbalization output to the cur-
rent target audience (e.g. replace the default deontic “it is obligatory that” with “It
ought to be that” or even a personalized ‘CompanyName policy requires that’).

The goal of dynamic verbalization is to output verbalization that is easily validated
by the reader. Readers typically prefer verbalization in their native language. If the
reader wants a full report instead of individual diagram selections, then the same ver-
balization engine should be able to produce both a standalone printed report and a
website of mini-reports for each object type, fact type, and constraint.

Two approaches may be used to generate a verbalization phrase. Both combine
user-provided predicate text and object type names or instances with text particles
provided by the verbalization engine. The first approach uses concatenation, where
pieces of a phrase are constructed by combining particles in a specific order. The sec-
ond approach uses field replacement, where the particles specify the location and or-
der of the particles surrounding them. Let’s break down the verbalized phrase “Each
Person was born in some Country” using both approaches.

To use concatenation to verbalize this phrase requires seven strings to be combined
in the correct order. Arbitrary predicate text requires arity+1 strings. In this case, the
three predicate strings are {"", " was born in ", ""}. In addition to the predicate strings,
the user-provides the object type names {"Person", "Country"}. The verbalization en-
gine then provides the universal quantifier "each " and the existential quantifier "some
". The specified pattern (a simple mandatory constraint on a binary predicate where
the mandatory role begins a predicate reading) is now built as follows. Though not
shown here, each verbalization starts with a capital letter and ends in a period “.”.

 "" + "each " + "Person" + " was born in " + "some " + "Country" + ""

In practice, generating formatted text is significantly more complicated because
each particle must include formatting specifications before and after the text, thus tri-
pling the number of text particles necessary to complete the phrase.

The field replacement approach uses numbered replacement fields. We’ll show
these in the format required for the .NET System.String.Format function, which uses
(regular expression) “\{\d+\}” to denote a zero-based replacement field in a format
string. For example, “{0}” in a format string is the placeholder for the first replace-
ment field. The Format function takes a format string as the first argument, followed
by arguments for the replacement fields. For our current phrase, the predicate text is
"{0} was born in {1}" and the quantifiers become "each {0}" and "some {0}". The
equation now looks like:

REPLACE("{0} was born in {1}", REPLACE("each {0}", "Person"), REPLACE("some
{0}", "Country"))

Note three immediate advantages to this approach. First, the model stores a single
predicate text with replacement fields instead of arity+1 strings. Second, adding for-
matting specifications to verbalization-provided quantifiers does not increase the
number of snippets or increase the algorithmic complexity. Third, order dependency
is eliminated: “each” may come before “Person” in English, but other languages may
have some quantifiers either after or around a given replacement field. Using the con-
catenation approach would require new code for each language or before/after speci-
fication for every phrase. The replacement approach removes all ordering and format-
ting considerations from the code, placing the onus for ordering on the snippets.

Using field replacement exclusively in the ORM2 verbalization engine allows all
snippets to be specified as user-modifiable data. Concatenation is used only for list
generation and incorporates user-specified list separators. Using field replacements

simplifies the verbalization engine and enables data-driven snippet sets to be specified
according to both language and user preferences. Snippets are considered dynamic
data; how they are combined is specified statically for each verbalized model element.

Given the decision to employ field replacement, the next step was to identify com-
ponents and determine which pieces should be generated and which ones hand coded.
Two primary factors weighed in this decision: First, how often is the code reused?
Code generation is generally cost effective only if the generator is applied to more
than one piece of data. Second, how complex is the mapping from the verbalization
specification to the generated code? The more complex the pattern, the more vital it is
to concisely represent that pattern as data, allowing the resulting verbalization imple-
mentation to be indirectly modified by changing the input data to the generator.

The implementation was eventually broken down into the following components:
1) The selection manager determines which elements are to be verbalized, applies

all phrase delimiters such as capitalization and punctuation of sentences, adds lines
between selected elements, and indents verbalization phrases for aggregated elements.
A good selection management routine allows individual elements to concentrate on
self-verbalizing without worrying about the context in which they are verbalized. Se-
lection management routines reference dynamic snippets for document header and
footer information, punctuation, and white space, but are otherwise hand coded. The
engine recognizes the IVerbalize interface implemented by individual elements.

2) The snippet manager determines which snippet variations are available on the
user’s machine. Snippets can be specified by the core model and any other extension
model (the core is not given preferential treatment). User-authored XML files provide
customization. The snippet manager presents the user with the available snippets (in
the options page), then validates and loads the files. The reference implementation of
each snippet set is coded into the application to protect the engine from rogue cus-
tomizations. The snippet manager is hand-coded, while the snippet set implementa-
tion is generated. XML for the reference snippet set is installed but never loaded.

The selection and snippet management components provide the necessary frame-
work for individual elements to verbalize themselves. From the selection manager
perspective, an element can be verbalized if it implements the IVerbalize interface.
This paper focuses on the XML patterns used to represent the complex patterns in the
verbalization specification. Individual element verbalization is difficult and involves
precise translation from specification to code. Representing the specification in XML
provides a formal, unambiguous representation of the expected verbalization in a
form that can be easily verified and modified. Given the XML, generating IVerbalize
interface implementations is an XSLT exercise that is beyond the scope of this paper.

Various XML constructs are needed to fully reflect the verbalization specification.
The Snippet element, referencing a snippet name, is the only obvious construct. The
number of children inside a Snippet tag corresponds to the number of replacement
fields expected. The XML schema then revolves around different ways to specify re-
placement fields, often recursively. The difficulty is to specify conditions to deter-
mine which snippet combinations to use. Conditions come in many different forms.

1) Differences in modality (alethic or deontic) and sign (positive and negative ver-
balization) are primarily handled by providing different snippets with the same name.
Retrieving a snippet by {name, modality, sign} instead of just {name} takes care of
the largest variability in specifying which snippet to use. It is possible to specify radi-

cally different verbalizations for sign and modality, but the majority of the cases, es-
pecially with modality, have the same pattern with minor variations in the snippet. For
the common case, no additional XML is required to switch modality and sign.

2) Differences in the shape of constraints. These differences revolve around the
number and arrangement of roles and are represented by the ConstrainedRoles tag.
Possible attributes of ConstrainedRoles include factArity (the number of roles in the
fact being constrained, used for internal uniqueness and simple mandatory con-
straints), factCount (the number of fact types being constrained), maxFactArity and
minFactArity (similar to factArity, but used for multi-fact constraints), and sign (set
to either positive or negative, to use different patterns on sign).

3) Differences in the availability of reading text for a given lead role or reading or-
der. ORM verbalization uses the most natural reading available, falling back on a
more complicated form if the optimal reading is not available. The ConditionalRead-
ing tag, occurring directly inside ConstrainedRoles, contains ReadingChoice tags,
each of which specifies a match attribute with reading conditions. Reading prece-
dence corresponds to the order of the ReadingChoice tags. The last ReadingChoice
tag can omit the match attribute, indicating the lowest priority fallback condition.

4) Once a pattern and reading are selected, decisions still need to be made based on
how a given role is used in the constraint. The most common classification is whether
a role in the FactType is included or excluded in the constraint. Additional classifica-
tions occur when roles are iterated (with the IterateRoles tag). Inside an iteration, a
given role can be included (a constrained role), excluded (not a constrained role), pri-
mary (the current role in the set being iterated), and secondary (a role in the set being
iterated that is not the current role). Specifying sets of roles in this fashion gives us a
flexible, set-based algorithm that works for both single-role and multi-role sets.

The following sample, which is part of the MandatoryConstraint specification, il-
lustrates uses of these tags and conditions. <!-- Comments --> are in the XML.

< !-- Specify the type of constraint. This will implement IVerbalize on the MandatoryConstraint class. -->
<Constraint type="MandatoryConstraint" patternGroup="SetConstraint">
<!-- Positive verbalization of a mandatory constraint on a unary fact type --><!-- Each A R -->
 <ConstrainedRoles constraintArity="1" factArity="1" sign="positive">
<!-- ImpliedModalNecessityOperator: ‘{0}’ (positive alethic), ‘it is obligatory that {0}’ (positive deontic) -->
 <Snippet ref="ImpliedModalNecessityOperator">
<!-- UniversalQuantifier is ‘each {0}’ -->
 <Snippet ref="UniversalQuantifier">
<!-- Fill the default predicate text replacement fields with the role player names -->
 <Fact/></Snippet></Snippet></ConstrainedRoles>

<!-- A single-role simple mandatory constraint on a binary fact type --><!-- Each A R some B -->
 <ConstrainedRoles constraintArity="1" factArity="2">
<!-- The pattern will change based on the available predicate text -->
 <ConditionalReading>
<!-- A reading is available that begins with the constrained role -->
 <ReadingChoice match="RequireLeadReading">
 <Snippet ref="ImpliedModalNecessityOperator">
<!-- Populate the predicate text using the reading from the current context -->
 <Fact readingChoice="Context">
<!-- Qualify all roles included in the constraint with the UniversalQuantifier ‘each {0}’ -->
 <PredicateReplacement match="included">

 <Snippet ref="UniversalQuantifier"/></PredicateReplacement>
<!-- Qualify all remaining roles included in the constraint with the ExistentialQuantifier ‘some {0}’ -->
 <PredicateReplacement>
 <Snippet ref="ExistentialQuantifier"/>

</PredicateReplacement></Fact></Snippet></ReadingChoice>
<!-- The negative form of the snippets changes ‘each’ to ‘any’ and ‘some’ to ‘no’. Combining these two
snippet variations with the ImpliedModalNecessityOperator changes ‘Each A R some B’ to ‘It is impossible
that any A R no B’. Given that the pattern change is limited to the snippet variations only, there is no rea-
son to provide an alternate pattern for negative or deontic forms of the verbalization phrase -->

<!-- Move onto the fallback form (no lead reading is available) --><!-- For each A, some B S that A -->
 <ReadingChoice>
<!—The ForEachCompactQuantifier snippet has two replacement fields on the same line -->
 <Snippet ref="ForEachCompactQuantifier">
<!-- List all included roles. A listStyle is not needed here as the ConstrainedRoles conditions ensure there
will only be one item in the set. Otherwise, listStyle could be SimpleList. The hyphenBind attribute indi-
cates that any hyphen binding in the predicate text should also be applied when the roles are listed -->
 <IterateRoles match="included" listStyle="null" hyphenBind="true"/>
<!-- The rest is similar to the previous case, except ‘each A’ becomes ‘that A’ -->
 <Snippet ref="ImpliedModalNecessityOperator">
 <Fact>
 <PredicateReplacement match="included">
 <Snippet ref="DefiniteArticle"/></PredicateReplacement>
 <PredicateReplacement>
 <Snippet ref="ExistentialQuantifier"/>
 </PredicateReplacement></Fact>
</Snippet></Snippet></ReadingChoice></ConditionalReading></ConstrainedRoles></Constraint>

This style of XML is used to verify that we have an exact match with the specifica-
tion, and forms the input to the code generator. There are other conditional constructs
that are not shown. For example, ConditionalSnippet allows us to use the same re-
placement fields while varying the snippets and ConditionalReplacement allows us to
use different replacement contents inside a single snippet. Additional conditional and
iteration constructs are being added as needed to formalize the verbalization require-
ments. Including standard code to verify error conditions that is generated with all
constraints, the sample XML above (~30 lines of data, comprising 2 of the 6 Con-
strainedRoles elements on MandatoryConstraint) produces ~350 lines of code. In
general, we’re getting at least a 1/10 ratio between XML and generated code. In addi-
tion to being able to easily verify the implementation against the spec, we also have
the advantage that a minor change in the code generator can produce widespread
changes in the code base. For example, ~50 lines of new XSLT and some new hand-
coded support functions added hyphen binding support to all constraint verbalizations.

5 Conclusion

This paper discussed the automated support for verbalization of ORM 2 models pro-
vided by the open source NORMA tool, which caters for verbalization patterns that
go well beyond previous verbalization work in ORM, and uses a generation process
based on application of XSLT transforms to an XML file that succinctly identifies dif

ferent verbalization patterns and describes how phrases are combined to produce a
readable verbalization. At the time of writing, most ORM constraint patterns have
been specified and implemented. Future work will extend the verbalization to cover
all aspects of ORM 2 models (schemas plus populations).

References

1. Atkins C. and Patrick J. P., ‘NaLER: A natural language method for interpreting entity-

relationship models’, Campus-Wide Information Systems 17(3), 2000, pp. 85-93.
2. Bakema, G., Zwart, J. & van der Lek, H. 2000, Fully Communication Oriented Informa-

tion Modelling, Ten Hagen Stam, The Netherlands.
3. Barker, R. 1990, CASE*Method: Entity Relationship Modeling, Addison-Wesley, Wok-

ingham.
4. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proc. ER’97: 16th

Int. Conf. on conceptual modeling, Springer LNCS, no. 1331, pp. 113-26.
5. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM

Transactions on Database Systems, 1(1), pp. 9−36.
6. Embley, D. 1998, Object Database Management, Addison-Wesley, Reading, MA.
7. Halpin T. & Harding J. 1993, ‘Automated support for verbalization of conceptual sche-

mas’, Proc. 4th Workshop on Next Generation CASE Tools, eds S. Brinkkemper & F.
Harmsen, Univ. Twente Memoranda Informatica 93-32, Paris, pp. 151-161.

8. Halpin, T. 2001, Information Modeling and Relational Databases, Morgan Kaufmann,
San Francisco.

9. Halpin, T. 2004, ‘Business Rule Verbalization’, Information Systems Technology and its
Applications, Proc. ISTA-2004, (eds Doroshenko, A., Halpin, T., Liddle, S. & Mayr, H.),
Salt Lake City, Lec. Notes in Informatics, vol. P-48, pp. 39-52.

10. Halpin T. 2005, ‘ORM 2’, OTM 2005 Workshops, eds R. Meersman, Z. Tari, P. Herrero et
al., Springer LNCS 3762, Cyprus, 2005, pp. 676-87.

11. Halpin, T. 2006, ‘Verbalizing Business Rules: Part 14’, Business Rules Journal, Vol. 7,
No. 4. URL: http://www.BRCommunity.com/a2006/b283.html.

12. Halpin, T. 2006, ‘Business Rule Modality’, Proc. CAiSE’06 Workshops, eds T, Latour &
M. Petit, Namur University Press, pp. 383-94.

13. Halpin, T., Curland, M. & CS445 Class 2006, ‘ORM 2 Constraint Verbalization: Part 1’,
Technical Report ORM2-02, Neumont University. Available online at
http://www.orm.net/pdf/ORM2_TechReport2.pdf.

14. Halpin, T., Evans, K, Hallock, P. & MacLean, W. 2003, Database Modeling with Micro-
soft® Visio for Enterprise Architects, Morgan Kaufmann, San Francisco.

15. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, ‘Formal definition of
a conceptual language for the description and manipulation of information models’, In-
formation Systems, vol. 18, no. 7, pp. 489-523.

16. Meersman, R. M. 1982, The RIDL conceptual language. Research report, Int. Centre for
Information Analysis Services, Control Data Belgium, Brussels.

17. NORMA URL: https://sourceforge.net/projects/orm.
18. Object Management Group 2003, UML 2.0 Superstructure Specification. Online:

www.omg.org/uml.
19. Ross, R., Lam, G. 2001, ‘RuleSpeak Sentence Templates: Developing Rules Statements

Using Sentence Patterns’, Business Rule Solutions, Online at www.BRCommunity.com.
20. Sowa, J. F. 2004, ‘Common Logic Controlled English’, Draft available online at

http://www.jfsowa.com/clce/specs.htm.
21. Warmer, J. & Kleppe, A. 2003, The Object Constraint Language: Getting Your Models

Ready for MDA, 2nd edn., Addison-Wesley.

http://www.brcommunity.com/

	1 Introduction

