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Abstract: Object-Role Modeling (ORM) is a method for modeling and querying an information system 
at the conceptual level, and mapping between conceptual and logical (e.g. relational) levels. ORM 
comes in various flavors, including NIAM (Natural language Information Analysis Method). This 
article provides an overview of ORM, and notes its advantages over Entity Relationship and traditional 
Object-Oriented modeling. 

 
1 Introduction 
 
1.1 ORM: what is it and why use it? 
 
Object-Role Modeling (ORM) is primarily a method for modeling and querying an information system at 
the conceptual level. In Europe, the method is often called NIAM (Natural language Information Analysis 
Method). Since information systems are typically implemented on a DBMS that is based on some logical 
data model (e.g. relational, object-relational, hierarchic), ORM includes procedures for mapping between 
conceptual and logical levels. Although various ORM extensions have been proposed for process and event 
modeling, the focus of ORM is on data modeling, since the data perspective is the most stable and it 
provides a formal foundation on which operations can be defined. 
 For correctness, clarity and adaptability, information systems are best specified first at the 
conceptual level, using concepts and language that people can readily understand. Analysis and design 
involves building a formal model of the application area or universe of discourse (UoD). To do this 
properly requires a good understanding of the UoD and a means of specifying this understanding in a clear, 
unambiguous way. Object-Role Modeling simplifies this process by using natural language, as well as 
intuitive diagrams that can be populated with examples, and by expressing the information in terms of 
elementary relationships.  
 ORM is so-called because it pictures the world in terms of objects (entities or values) that play roles 
(parts in relationships). For example, you are now playing the role of reading, and this paper is playing the 
role of being read. In contrast to other modeling techniques such as Entity-Relationship (ER) and Object-
Oriented (OO) approaches, ORM makes no explicit use of attributes. For example, instead of using 
countryBorn as an attribute of Person, we use the relationship type Person was born in Country. This has many 
important advantages. Firstly, ORM models and queries are more stable (attributes may evolve into entities 
or relationships). For example, if we decide to later record the population of a country, then our countryBorn 
attribute needs to be reformulated as a relationship. Secondly, ORM models may be conveniently populated 
with multiple instances (attributes make this too awkward). Thirdly, ORM is more uniform (e.g. we don’t 
need a separate notation for applying the same constraint to an attribute rather than a relationship).  
 ORM is typically more expressive than ER or OO. Its role-based notation makes it easy to specify a 
wide variety of constraints, and its object types reveal the semantic domains that bind a schema together. 
One benefit of this is that conceptual queries may now be formulated in terms of schema paths, where 
moving from one role though an object type to another role amounts to a conceptual join (see later).  
 Unlike ORM or ER, popular OO models often duplicate information by wrapping facts up into pairs 
of inverse attributes in different objects. Moreover, OO notations have weak support for constraints (e.g. a 
constraint might have to be duplicated in different objects, or even ignored). Unfortunately, OO models are 
less stable than even ER models when the UoD evolves. For such reasons, OO models should be used only 
for implementation, not for analysis. 
 Although the detailed picture provided by ORM is desirable in developing and transforming a 
model, for summary purposes it is useful to hide or compress the display of much of this detail. Various 
abstraction mechanisms exist for doing this [e.g. CHP96]. If desired, ER and OO diagrams can also be used 
for providing compact summaries, and are best developed as views of ORM diagrams. For a simple 
discussion illustrating the points in this section, see [Hal96].  
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 The rest of this article provides a brief history of ORM, summarizes the ORM notation, illustrates 
the conceptual design and relational mapping procedures, and mentions some recent extensions before 
concluding. 
 
1.2 A brief history of ORM 
 
In the 1970s, especially in Europe, substantial research was carried out to provide higher level semantics for 
modeling information systems. Abrial [Abr74], Senko [Sen75] and others discussed modeling with binary 
relationships. In 1973, Falkenberg generalized their work on binary relationships to n-ary relationships and 
decided that attributes should not be used at the conceptual level because they involved “fuzzy” distinctions 
and also complicated schema evolution. Later, Falkenberg proposed the fundamental ORM framework, 
which he called the “object-role model” [Fal76]. This framework allowed n-ary and nested relationships, 
but depicted roles with arrowed lines.  
 Nijssen [Nij76] adapted this framework by introducing the circle-box notation for objects and roles 
that has now become standard, and adding a linguistic orientation and design procedure to provide a 
modeling method called ENALIM (Evolving NAtural Language Information Model) [Nij77]. Nijssen led a 
group of researchers at Control Data in Belgium who developed the method further, including van Assche 
who classified object types into lexical object types (LOTs) and non-lexical object types (NOLOTs). Today, 
LOTs are commonly called “Entity types” and NOLOTs are called “Value types”. Kent [Ken77] provided 
several semantic insights and clarified many conceptual issues. 
 Meersman added subtypes, and made major contributions to the RIDL query language [Mee82] with 
Falkenberg and Nijssen. The method was renamed “aN Information Analysis Method” (NIAM) and 
summarized in a paper by Verheijen and van Bekkum [VB82]. In later years the acronym “NIAM” was 
given different expansions, and is now known as “Natural language Information Analysis Method”. Two 
matrix methods for subtypes were developed, one (the role-role matrix) by Vermeir [Ver83] and another by 
Falkenberg and others. 
 In the 1980s, Falkenberg and Nijssen worked jointly on the design procedure and moved to the 
University of Queensland, where the method was further enhanced by various academics. Halpin provided 
the first full formalization of the method [Hal89], including schema equivalence proofs, and made several 
refinements and extensions to the method. In 1989, Halpin and Nijssen co-authored a book on the method. 
A second edition of this book, authored by Halpin, was published in 1995 [Hal95]. Another book on the 
method, written by Wintraecken, was published in 1990 [Win90]. 
 Many researchers have contributed to the ORM method over the years, and there is no space here to 
list them all. Today various versions of the method exist, but all adhere to the fundamental object-role 
framework. Although most ORM proponents favor n-ary relationships, some prefer Binary-Relationship 
Modeling (BRM), e.g. Shoval [SS93]. Habrias [Hab93] developed an object-oriented version called MOON 
(Normalized Object-Oriented Method). The Predicator Set Model (PSM) was developed mainly by ter 
Hofstede, Proper and van der Weide [HPW93], and includes complex object constructors. De Troyer and 
Meersman [DM95] developed another version with constructors called Natural Object-Relationship Model 
(NORM). Halpin developed an extended version called Formal ORM (FORM), and with Bloesch and 
others at InfoModelers Inc. developed an associated query language called ConQuer [BH97]; this work is 
being extended at Visio Corporation. Van der Lek and others [BZL94] allowed entity types to be treated as 
nested roles, to produce Fully Communication Oriented NIAM (FCO-NIAM). Embley and others [EKW92] 
developed Object-oriented Systems Analysis (OSA) which includes an “Object-Relationship Model” 
component that has much in common with standard ORM, with no use of attributes.   
  
 
2 Data modeling in ORM 
 
1.3 Notation 
 
A modeling method includes both a notation and a procedure for using its notation. This subsection 
discusses notation, and later subsections discuss procedures. Each well-defined version of ORM includes a 
formal, textual specification language for both models and queries, as well as a formal, graphical modeling 
language. The textual languages are more expressive than the graphical languages, but are mentioned only 
briefly in this paper. Figure 1 summarizes most of the main symbols used in the graphical language. We 
now briefly describe each symbol. Examples of these symbols in use are given later. 
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Figure 1 Main ORM symbols 
 
 The symbols are numbered for easy reference. An entity type is depicted as a named ellipse (symbol 
1). A value type denotes a lexical object type (e.g. a character string or number) and is usually shown as a 
named, dotted ellipse (symbol 2). Another notation for value types encloses the value type name in 
parentheses. Object types that appear more than once in the schema may be tagged with an arrow tip (see 
symbol 3), that “points” to the existence of another occurrence. Each entity type must have at least one 
reference scheme, which indicates how each instance of the entity type may be mapped via predicates to a 
combination of one or more values. A simple injective (1:1 into) reference scheme maps entities to single 
values. For example, each country may be identified by a single country code (e.g. ‘USA’). In such cases 
the reference scheme may be abbreviated as in symbol 4 by displaying the reference mode in parentheses 
beside the name of the entity type, e.g. Country(code). The reference mode indicates how values relate to 
the entities. Symbol 5 shows that a plus sign “+” may be added if the values are numeric, e.g. Mass(kg)+. 
Values are constants with a universally understood denotation, and hence require no reference scheme. 
 Although not strictly a conceptual issue, it is normal to require each entity type to have a primary 
reference scheme. Relationship types used for primary reference are then called reference types. The other 
relationship types are known as fact types. In symbol 6, an exclamation mark is added to declare that an 
entity type is independent. This means that instances of that type may exist without participating in any 
facts. By default, this is not the case (i.e. we don’t normally introduce an object into the universe unless it 
takes part in some fact). 
 Symbol 7 shows a ternary predicate, comprised of three roles. Each role is depicted as a box, and 
must be played by exactly one object type. Roles are connected to their players by a line segment (see 
symbol 13). A predicate is basically a sentence with object holes in it, one for each role. The number of 
roles is called the arity of the predicate. Except for the BRM version, ORM allows predicates of any arity (1 
= unary, 2 = binary, 3 = ternary etc.). Predicates are usually treated as ordered, as in predicate logic. In this 
case, the name of the predicate is written either in or beside the first role box, and if necessary each object 
hole may be shown as an ellipsis “…”. Different readings may be provided so the information may be read 
in any direction. FORML allows mixfix predicates so objects may be placed at any position in the 
predicate. For example, the fact type Room at Time is used for Activity involves the predicate “… at … is used for …”. 
Apart from facilitating natural verbalization of n-ary relationships, mixfix predicates allow binary 
relationships to be verbalized in languages where the verb is not in the infix position (e.g. in Japanese, verbs 
come at the end). In some versions of ORM, relationship types are given a name, and each role is also given 
a name, thus making order irrelevant.  
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 Internal uniqueness constraints are depicted as arrow tipped bars (symbol 8), and are placed over 
one or more roles in a predicate to declare that instances for that role (combination) in the relationship type 
population must be unique. For example, adding a uniqueness constraint over the first role of Person was born 
in Country declares that each person was born in at most one country. A predicate may have one or more 
uniqueness constraints, at most one of which may be declared primary by adding a “P” (symbol 9). An 
external uniqueness constraint shown as a circled “u” may be applied to two or more roles from different 
predicates by connecting to them with dotted lines (symbol 10). This indicates that instances of the 
combination of those roles in the join of those predicates are unique. For example, to say that a state is 
identified by combining its statecode and country, we add an external uniqueness constraint to the roles 
played by Statecode and Country in the reference types: State has Statecode; State is in Country. To declare an 
external uniqueness constraint primary, use “P” instead of “u” (symbol 11). An object type may have at 
most one primary reference constraint. 
 If we want to talk about a relationship type we may objectify it (i.e. make an object out of it) so that 
it can play roles. Graphically, the objectified predicate is enclosed in either a rounded rectangle (symbol 12) 
or an ellipse, and named. Objectified predicates are also called nested object types. Typically the objectified 
predicate must have a spanning uniqueness constraint, but 1:1 cases may also be allowed [Hal93].  
 A mandatory role constraint declares that every instance in the population of the role’s object type 
must play that role. It is usually shown as a black dot (see symbol 13) but a universal quantifier is 
sometimes used. Mandatory roles are also called total roles. A disjunctive mandatory constraint may be 
applied to two or more roles to indicate that all instances of the object type population must play at least 
one of those roles. This may often be shown by connecting the roles to a black dot on the object type 
(symbol 14) or in general by connecting the roles by dotted lines to a circled black dot (symbol 15).  
 To restrict an object type’s population to a given list, the relevant values may be listed in braces 
(symbol 16, top). If the values are ordered, a range may be declared separating the first and last values by 
“..” (symbol 16, bottom). These constraints are called value constraints. 
 Symbols 17-19 denote set comparison constraints, and may only be applied between compatible role 
sequences (i.e. sequences of one or more roles, where the corresponding roles have the same host object 
type). A dotted arrow (symbol 17) from one role sequence to another is a subset constraint, restricting the 
population of the first sequence to be a subset of the second. A double-tipped arrow (symbol 18) is an 
equality constraint, indicating the populations must be equal. A circled “X” (symbol 19) is an exclusion 
constraint, indicating the populations are mutually exclusive. Exclusion constraints may be applied between 
two or more sequences. 
 A solid arrow (symbol 20) from one object type to another indicates that the first object type is a 
(proper) subtype of the other. For example, Woman is a subtype of Person. Totality (circled black dot) and 
exclusion (circled “X”) constraints may also be displayed between subtypes, but are implied by other 
constraints if the subtypes are given formal definitions. 
 Symbol 21 shows three kinds of frequency constraint. Applied to a sequence of one or more roles, 
these indicate that instances that play those roles must do so exactly n times, between n and m times, or at 
least n times.   
 Symbol 22 shows six kinds of ring constraint, that may be applied to a pair of roles played by the 
same host type. These indicate that the binary relation formed by the role population must be irreflexive (ir), 
intransitive (it), acyclic (ac), asymmetric (as), antisymmetric (ans) or symmetric (sym). 
 Symbol 23 is an asterisk “*”, which may be placed beside a fact type to indicate that it is derivable 
from other fact types. Not all versions of ORM support all these symbols, and some versions have a few 
more symbols. InfoModeler, a popular ORM tool, supports all of the symbols shown, as will a future 
release of Visio Professional. 
 
1.4 Conceptual schema design procedure 
 
The information systems life cycle typically involves several stages: feasibility study; requirements 
analysis; conceptual design of data and operations; logical design; external design; prototyping; internal 
design and implementation; testing and validation; and maintenance. ORM's conceptual schema design 
procedure (CSDP) focuses on the analysis and design of data. The conceptual schema specifies the 
information structure of the application: the types of fact that are of interest; constraints on these; and 
perhaps derivation rules for deriving some facts from others. With large applications, the UoD is divided 
into convenient modules, the CSDP is applied to each, and the resulting subschemas are integrated into the 
global conceptual schema.  
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 Table 1 shows the CSDP used in FORM. Although different versions of the CSDP exist, they all 
agree on the importance of verbalization in terms of elementary facts, population checks, and thorough 
analysis of business rules. The rest of this section illustrates the basic working of this design procedure by 
means of an example. Because of space limitations, our treatment is necessarily brief. A much more 
detailed discussion of the same example can be electronically accessed from [Hal97]. 
 
Table 1 The conceptual schema design procedure (CSDP) 
 
Step 
  1. Transform familiar information examples into elementary facts, and apply quality checks. 
  2. Draw the fact types, and apply a population check. 
  3. Check for entity types that should be combined, and note any arithmetic derivations. 
  4. Add uniqueness constraints, and check arity of fact types. 
  5. Add mandatory role constraints, and check for logical derivations. 
  6. Add value, set comparison and subtyping constraints. 
  7. Add other constraints and perform final checks. 
 

 
 Step 1 is the most important. Examples of the information required from the system are verbalized in 
natural language. Such examples are often available in the form of output reports or input forms, perhaps 
from a current manual version of the required system. If not, the modeler can work with the client to 
produce examples. To avoid misinterpretation, a UoD expert (a person familiar with the application) should 
perform or at least check the verbalization. As an aid to this process, the speaker imagines he/she has to 
convey the information contained in the examples to a friend over the telephone. 
 For our case study, we consider a fragment of an information system used by a university to 
maintain details about its academic staff and academic departments. One function of the system is to print 
an academic staff directory, as exemplified by the report extract shown in Table 2. Part of the modeling task 
is to clarify the meaning of terms used in such reports. The descriptive narrative provided here would thus 
normally be derived from a discussion with the UoD expert. The terms “empnr” and “extnr” abbreviate 
“employee number” and “extension number”.  
 A phone extension may have access to local calls only (“LOC”), national calls (“NAT”), or 
international calls (“INT”). International access includes national access, which includes local access. In the 
few cases where different rooms or staff have the same extension, the access level is the same. An academic 
is either tenured or on contract. Tenure guarantees employment until retirement, while contracts have an 
expiry date. 
 
Table 2 Extract from a directory of academic staff 
  

    Phone Tenured/ 
Empnr EmpName Dept Room Extnr Access Contract-expiry 

715 
720 
139 
430 
503 
651 
770 
112 
223 
951 
333 
654 
... 

Adams A 
Brown T 
Cantor G 
Codd EF 
Hagar TA 
Jones E 
Jones E 
Locke J 
Mifune K 
Murphy B 
Russell B 
Wirth N 
... 

Computer Science 
Biochemistry 
Mathematics 
Computer Science 
Computer Science 
Biochemistry 
Mathematics 
Philosophy 
Elec. Engineering 
Elec. Engineering 
Philosophy 
Computer Science 
... 

69-301 
62-406 
67-301 
69-507 
69-507 
69-803 
67-404 
1-205 

50-215A 
45-B19 
1-206 

69-603 
... 

2345 
9642 
1221 
2911 
2988 
5003 
1946 
6600 
1111 
2301 
6600 
4321 

... 

LOC 
LOC 
INT 
INT 
LOC 
LOC 
LOC 
INT 
LOC 
LOC 
INT 
INT 
... 

01/31/95 
01/31/95 
tenured 
tenured 
tenured 

12/31/96 
12/31/95 
tenured 
tenured 

01/03/95 
tenured 
tenured 

... 
  
 The information contained in this Table is to be stated in terms of elementary facts. Basically, an 
elementary fact asserts that a particular object has a property, or that one or more objects participate in a 
relationship, where that relationship cannot be expressed as a conjunction of simpler (or shorter) facts 
without introducing new object types [Hal93]. For example, to say that Bill Clinton jogs and is the president 
of the USA is to assert two elementary facts. 
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 As a first attempt, one might read off the information on the first data row as the six facts f1-f6. Each 
asserts a binary relationship between two objects. For discussion purposes the predicate is shown in bold 
between the noun phrases that identify the objects, and object type names start with a capital letter. Some 
obvious abbreviations are used (“empnr”, “EmpName”, “Dept”, “extnr”); when read aloud these can be 
expanded to “employee number”, “Employee name”, “Department” and “extension number”. The second 
data row contains different instances of these six fact types. Row three, because of its final column, 
provides an instance f7 of a seventh fact type, a unary. 
 
f1  The Academic with empnr 715 has EmpName ‘Adams A’. 
f2 The Academic with empnr 715 works for the Dept named ‘Computer Science’. 
f3 The Academic with empnr 715 occupies the Room with roomnr ‘69-301'. 
f4 The Academic with empnr 715 uses the Extension with extnr ‘2345’.  
f5 The Extension with extnr ‘2345’ provides the AccessLevel with code ‘LOC’.  
f6 The Academic with empnr 715 is contracted till the Date with mdy-code ‘01/31/95’. 
f7 The Academic with empnr 139 is tenured. 
 
Different readings may be provided to allow relationships to be read in different directions. For example, 
the inverse reading of f4 is: The Extension with extnr ‘2345’ is used by the Academic with empnr 715. To save writing, 
both the normal predicate and its inverse may be included in the same declaration, with the inverse 
predicate preceded by a slash “/”. For example: 
 
f4’ The Academic with empnr 715 uses /is used by the Extension with extnr ‘2345’. 
 
Predicate names are usually unique in the conceptual schema. In some cases (e.g. “has”), the same name 
may be used externally for different predicates: internally these have different identifiers. 
 As a quality check at Step 1, we ensure that objects are well identified. Values are identified by 
constants (e.g. ‘Adams A’, 715). Entities are “real world” objects that are identified by a definite 
description (e.g. the Academic with empnr 715). Fact f1 involves a relationship between an entity (a 
person) and a value (a name is just a character string). Facts f2-f6 specify relationships between entities. 
Fact f7 states a property (or unary relationship) of an entity. 
 As a second quality check at Step 1, we use our familiarity with the UoD to see if some facts should 
be split or recombined (a formal check on this is applied later). For example, suppose facts f1 and f2 were 
verbalized as: The Academic with empnr 715 and empname ‘Adams A’ works for the Dept named ‘Computer Science’. The 
presence of the word “and” suggests that this may be split without information loss. The repetition of 
“Jones E” on different rows of Table 2 shows that academics cannot be identified just by their name. 
However the uniqueness of empnr in the sample population suggests that this suffices for reference. Since 
the “and-test” is only a heuristic, and sometimes a composite naming scheme is required for identification, 
the UoD expert is consulted to verify that empnr by itself is sufficient for identification. With this assurance 
obtained, the composite sentence is now split into f1 and f2. 
 As an alternative to specifying complete facts one at a time, the reference schemes may be declared 
up front and then assumed in later facts. For example, suppose we declare the following: Academic(empnr); 
EmpName(); Dept(name). The empty parentheses after EmpName indicates it is a value type and hence needs no 
reference scheme. Now facts f1 and f2 may be stated as: Academic 715 has EmpName ‘Adams A’; Academic 715 works 
for Dept ‘Computer Science’.  Facts f1-f7 are instances of the following fact types: 
 
F1  Academic has EmpName 
F2 Academic works for Dept 
F3 Academic occupies Room 
F4 Academic uses Extension 
F5 Extension provides AccessLevel 
F6 Academic is contracted till Date 
F7 Academic is tenured 
  
 Step 2 of the CSDP is to draw a draft diagram of the fact types and apply a population check (see 
Figure 2). As a check, each fact type has been populated with at least one fact, shown as a row of entries in 
the associated fact table, using the data from rows 1 and 3 of Table 2. The English sentences listed before as 
facts f1-f7, as well as other facts from row 3, may be read directly off this figure. Though useful for 
validating the model with the client and for understanding constraints, the sample population is not part of 
the conceptual schema itself. 
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Figure 2 Draft diagram of fact types for Table 2 with sample population 
 
 Suppose the information system is also required to assist in the production of departmental hand-
books. Figure 3 shows an extract from a page of one such handbook. In this university academic staff are 
classified as professors, senior lecturers or lecturers, and each professor holds a “chair” in a research area. 
To reduce the size of our problem, we have excluded many details that in practice would also be recorded 
(e.g. office phone and fax). To save space, details are shown here for only four of the 22 academics in that 
department. The data are, of course, fictitious. 
 
 

 
Department: Computer Science 

Home phone of Dept head:  9765432  
 
Chairs  Professors (5) 
 
Databases         Codd EF BSc (UQ); PhD (UCLA)  (Head of Dept) 
Algorithms          Wirth N BSc (UQ); MSc (ANU); DSc (MIT) 
 … 
 
Senior Lecturers (9) 
 
Hagar TA  BInfTech (UQ); PhD (UQ) 
 … 
 
Lecturers (8) 
 
Adams A  MSc (OXON) 
 … 
 

 
 
Figure 3 Extract from Handbook of Computer Science Department 
 
  It appears from the handbook example that within a single department, academics may be identified 
by their name. Let us assume this is verified by the UoD expert. However the complete application requires 
us to handle all departments in the same information system, and to integrate this subschema with the 
directory subschema considered earlier. Hence we must replace the academic naming convention used for 
the handbook example by the global scheme used earlier (i.e. empnr). 
 We use this report to illustrate Step 3 of the CSDP: check for entity types that should be combined, 
and note any arithmetic derivations. Suppose we verbalized the degree information in terms of the three 

Extension
(extnr)

Academic
(empnr)

Dept
(name)

AccessLevel
(code)

Date
(mdy)

Room
(roomnr)

EmpName

is used by / uses

2345      LOC
1221      INT 715       Adams A

139       Cantor G

is contracted till

is tenured

2345      715
1221      139

715      Computer Science
139      Mathematics

715      01/31/97

139

69-301      715
67-301      139

provides
has

works for

occupies
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ternary fact types: Professor obtained Degree from University; SeniorLecturer obtained Degree from University; Lecturer 
obtained Degree from University. The common predicate suggests that the entity types Professor, SeniorLecturer 
and Lecturer should be collapsed to the single entity type Academic, with this predicate now shown only 
once. To preserve the original information about who is a professor, senior lecturer or lecturer we introduce 
the fact type: Academic has Rank. Let's use the codes “P”, “SL” and “L” for the ranks of professor, senior 
lecturer and lecturer.  
 The second aspect of Step 3 is to see if some fact types can be derived from others by arithmetic. 
Since we now record the rank of academics as well as their departments, we can compute the number in 
each rank in each department simply by counting. So the fact type Dept employs academics of Rank in Quantity is 
derivable. If desired, derived fact types may be included on a schema diagram if they are marked with an 
asterisk “*”. At any rate, a derivation rule must be supplied. This may be written below the diagram (see 
Figure 4). Here “iff” abbreviates “if and only if”. 
 Step 4 of the CSDP is to add uniqueness constraints and check the arity of the fact types. For 
example, we add a uniqueness constraint to the first role of works for to ensure each academic works for at 
most one department. An arity check ensures each uniqueness constraint on an n-ary spans at least n-1 roles.  
 Step 5 of the CSDP is to add mandatory role constraints, and check for logical derivations. For 
example, we need a disjunctive mandatory constraint to declare that each academic either is contracted till 
some date or is tenured. Roles that are not mandatory are optional. If an object type plays only one fact role 
in the global schema, then by default this is mandatory, but a dot is not normally shown.  
 Suppose that departmental handbooks include a building directory, which lists the names as well as 
the numbers of buildings. A sample fact might be: Building ‘67’ has Buildingname ‘Priestly’. Earlier we 
identified rooms by a single value. For example “67-301” was used to denote the room in building 67 which 
has room number “301”. Now that buildings are to be talked about in their own right, we replace the simple 
reference scheme by a composite one that shows the full semantics (see Figure 4). Here Roomnr now means 
just the number (e.g. “301”) used to identify the room within its building. 
  To illustrate nesting, suppose the application requires reports about teaching commitments, an 
extract of which is shown in Table 3. Not all academics currently teach. If they do, their teaching in one or 
more subjects may be evaluated and given a rating. Some teachers serve on course curriculum committees. 
Here the new fact types may be schematized as shown in Figure 4. The nested object type Teaching plays 
only one role, and this role is optional, so Teaching is an independent object type (as shown by the “!”).  
 
Table 3 Extract of report on teaching commitments 
 

Empnr Emp. name Subject Rating Committees 

715 Adams A CS100 
CS101 

5 
 

 
 

430 Codd EF    

654 Wirth N CS300  BSc-Hons 
CAL Advisory 

 
  The second stage of Step 5 is to check for logical derivations (i.e. can some fact type be derived 
from others without the use of arithmetic?). One strategy here is to ask whether there are any relationships 
(especially functional relationships) which are of interest but which have been omitted so far. Another 
strategy is to look for transitive patterns of functional dependencies. Suppose that our client confirms that 
the rank of an academic determines the access level of his/her extension. For example, suppose a current 
business rule is that professors get international access while lecturers and senior lecturers get local access. 
This rule might change in time (e.g. senior lecturers might be arguing for national access). To minimize 
later changes to the schema, we store the rule as data in a table. So it can be updated as required by an 
authorized user without recompiling the schema. The relevant rule is shown at the bottom of Figure 4. 
 In Step 6 of the CSDP we add any value, set comparison and subtyping constraints. One value 
constraint is that Rankcode is restricted to {‘P’,‘SL’,‘L’}. In Figure 4, a pair-subset constraint runs from the 
heads predicate to the works for predicate, indicating that a person who heads a department must work for the 
same department. The rule that nobody can be tenured and contracted at the same time is captured by an 
exclusion constraint. Subtyping is determined as follows. Each optional role is inspected: if the role is 
played only by some well-defined subtype, a subtype node is introduced with this role attached. 
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Figure 4 The final conceptual schema 
 
 Subtype links and definitions are added. Figure 4 contains three subtypes: Teacher; Professor; and 
TeachingProfessor. In this university, each teacher is audited by another teacher.  Moreover, only professors 
may be department heads, and only teaching professors can serve on curriculum committees (not all 
universities work this way).  
 Step 7 of the CSDP adds other constraints and performs final checks. For example, auditing is 
irreflexive (no teacher audits himself/herself). Suppose we also need to record the teaching and research 
budgets of the departments. We might schematize this using the ternary Dept has for Activity a budget of MoneyAmt, 
where Activity has the value constraint {‘Teaching’, ‘Research’} and the first role is mandatory and 
constrained to a frequency of 2. 
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 Once the global schema is drafted, and the target DBMS decided, some optimization can often be 
performed to improve the efficiency of the logical schema obtained by mapping. Assuming the conceptual 
schema is to be mapped to a relational database schema, the ternary fact type about budgets will map to a 
separate table all by itself, leading to extra joins for some queries. We can avoid this problem by 
transforming the ternary into the following two binaries before we map: Dept has teaching budget of MoneyAmt; 
Dept has research budget of MoneyAmt. These binaries have simple keys, and will map to the “main” department 
table. Another optimization may be performed which moves the home phone information to Dept instead of 
Professor. Figure 4 includes these optimizations. Such conceptual schema transformations require a 
rigorous theory of schema equivalence and optimization strategies. For details on such topics, see [Hal95, 
ch. 9; HP95b; DeT93]. 
 
2.3 Logical Mapping 
 
Once the conceptual schema has been specified, the target data model is selected and the mapping is done. 
For example, the Rmap algorithm [RH93; Hal95] maps our conceptual schema to the relational schema 
shown in Figure 5 (domains omitted). If the conceptual fact types are elementary (as they should be), then 
the mapping is guaranteed to be free of redundancy, since each fact type is grouped into only one table, and 
fact types which map to the same table all have uniqueness constraints based on the same attribute(s).  
 Keys are underlined. If alternate keys exist, the primary key is doubly-underlined. A mandatory role 
is captured by making its corresponding attribute mandatory in its table (not null is assumed by default), by 
marking as optional (in square brackets) all optional roles for the same object type which map to the same 
table, and by running an equality/subset constraint from those mandatory/optional roles which map to 
another table. The  �2,1� in the pair-subset constraint indicates the source pair should be reversed before the 
comparison. Subtyping is captured by qualified optionals or qualified  subset constraints. The word “exists” 
means “a non-null value exists”. 
 

 
Figure 5 The relational schema mapped from Figure 4 

Building ( bldgnr, bldgname )

 {L,S,P}  {INT,NAT,LOC}
PhoneAccess ( rank, accesslevel )

Department ( deptname, headempnr, homephone, teachingbudget,
                                                         researchbudget )

      {P,SL,L}
Academic ( empnr, empname, deptname , extn, rank, bldgnr, roomnr,

 tenured, [enddate] 1, [chair]2, [auditor]3,4 )
   {Y,N}

Award ( empnr, degree, university )

Teaching ( empnr, subject , [rating] )
    {1..7}

CteeMember ( empnr, committee  )

1 exists iff tenured = 'N'
2 exists iff rank = 'P'
3 <> empnr
4 exists iff empnr in Teaching.empnr
5 only where rank = 'P'

* Provides ( extn, accesslevel ) ::= extn, accesslevel from
Academic natural join PhoneAccess

* Employs ( deptname, rank, nrstaff ) ::= deptname, rank, count(*)
from Academic
group by deptname, rank

<2,1>

5

5
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3 Recent extensions 
 
3.1 Conceptual queries 
 
Besides information modeling, ORM is also ideal for information querying. The first significant ORM 
query language was RIDL [Mee82], a hybrid language with both declarative and procedural components. 
Temporal aspects were added later to form TRIDL. Currently, research is being carried out on at least three 
ORM query languages: LISA-D [HPW93]; OSM-QL [EWPC96]; and ConQuer [BH96]. Of these ConQuer 
(CONceptual QUERy) is the only one to be commercially released. A more powerful version, ConQuer-II 
[BH97], is currently under development at Visio Corporation. 
 Using ConQuer, an ORM model may be queried directly without prior knowledge of either the 
conceptual schema or the corresponding relational schema, by dragging object types onto the query pane, 
selecting predicates of interest, applying restrictions and functions as desired, and ticking the items to be 
listed. As a simple example, consider the following English query on our academic database: list the empnr, 
empname and number of subjects taught for each academic who occupies a room in the Chemistry building 
and teaches more than two subjects. This may be formulated by drag-and-drop basically as follows: 
 
     Academic 
 ├─ is identified by � Empnr 
 ├─ has �Empname 
 ├─ occupies Room 
 │     └── is in Building 
 │    └── has BldgName ‘Chemistry’ 
 └── teaches Subject  
   └──�count (Subject) > 2 
 
 Notice how easily the conceptual joins are made. A verbalization of the query is automatically 
generated, as well as SQL code. Formulating queries in terms of objects and predicates is much easier than 
deciphering the semantics of the relational schema and coding in SQL or QBE. A major benefit of such 
queries is their semantic stability. For example, ConQuer queries are unaffected by most schema changes 
(e.g. addition of fact types, or changes to constraints). In contrast, such changes often require the 
corresponding SQL or ER query to be reformulated, since they depend on attribute structures. 

 
3.2 Other extensions 
 
Researchers are actively investigating several extensions to the basic ORM framework. These include 
abstraction mechanisms to allow users to control the amount of detail seen at any given time [CHP96], 
reverse engineering [SS93; CH94], support for complex objects [HW93; DM95], process-event modeling 
[Hof93], external schema generation [CH93], schema evolution [Pro94], schema optimization [HP95b; 
Bom94], meta-modeling [FO94], subtype extensions [HP95a], null handling [HR92], object-oriented 
mapping [ME96], unary nesting [BZL94], and empirical research [Eve94].  
 Although various versions of ORM have added support for complex objects, they differ in their 
approaches. Currently there seems to be a growing agreement that constructors (e.g. set, bag, sequence)  
should only be added after a “flat” ORM model is first developed. There are also different opinions on 
whether such constructors should be considered part of the conceptual model, or regarded as mapping 
annotations. Commercial developers of ORM tools are also extending the method. For example, 
InfoModeler includes extra constructs for mapping to object-relational databases, and extensions of this 
technology are being incorporated into future Visio products. 
 
4 Conclusion 
 
This article has provided only a brief sketch of the ORM method, emphasizing its fundamental features and 
touching on some of its advantages. Apart from its sound theoretical basis, the method has been used 
successfully in many countries, on applications from the small to the very large. The recent emergence of 
intuitive and powerful ORM tools has led to wider adoption of the method, which is now being successfully 
taught as early as high school level. Perhaps the greatest strengths of ORM are that it lifts the 
communication between modeler and client to a level where they can readily understand and validate the 
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application model using simple sentences, and that it has been designed from the ground up to facilitate 
schema evolution. This second advantage is very relevant to today’s business world where change is 
ongoing.  
 In an article this brief, several aspects of ORM have necessarily been glossed over. The reader who is 
interested in pursuing the area further should consult the cited references, which are included at the end of 
the handbook. 
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