
Data modeling in UML and ORM revisited 1

Data modeling in UML and ORM revisited
by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This paper first appeared in Proc. EMMSAD’98 4th IFIP WG8.1International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design, Heidelberg, Germany in June 1999.

Although the traditional entity relationship approach is still the most widely applied
technique for modeling database applications, object-oriented approaches and fact-oriented
approaches are being increasingly used for data modeling in general. The most popular
exemplars of the latter two approaches are respectively the Unified Modeling Language
(UML) and Object-Role Modeling (ORM). An initial, comparative evaluation of these
approaches indicated that UML has benefits for object-oriented code design (e.g.
implementation detail, including behavior), while ORM has advantages for conceptual
data modeling (e.g. semantic stability, graphical expressibility; clarity and validation
mechanisms). This paper further examines the relative strengths and weaknesses of ORM
and UML for data modeling, focusing on attribute multiplicity, association arity,
advanced constraints and subtyping. This analysis is given wider generality by
addressing various language design principles (e.g. parsimony, orthogonality,
convenience, expressibility) and illustrating how metamodel extensibility can be used to
capture some features of one approach within the other.

Introduction

Although most suited to the design phase of object-oriented (OO) programming, the
Unified Modeling Language (UML) can be used for database design in general, since
when stripped of OO implementation details, its class diagrams provide an extended
Entity-Relationship (ER) notation that can be annotated with database constructs (e.g. key
declarations). As an Object Management Group standard [20], the UML notation includes
diagrams for use cases, static structures (class, object), behavior (state chart, activity),
interaction (sequence, collaboration), and implementation (component, deployment).
Detailed discussion of these diagram types can be found in [2, 21]. Since this paper
focuses on conceptual data modeling, we restrict our discussion of UML to its class and
object diagrams, as supplemented by textual annotations.

While UML’s object-oriented approach facilitates the transition to object-oriented
code, a fact-orientated approach as exemplified by Object-Role Modeling (ORM) arguably
provides a better way to capture and validate data concepts and business rules with
domain experts, and to cater for structural changes in the application. By omitting the

Data modeling in UML and ORM revisited 2

attribute concept as a base construct, ORM allows communication in simple sentences,
where each sentence type is easily populated with multiple instances. ORM pictures the
world simply in terms of objects (entities or values) that play roles (parts in relationships).
Overviews of ORM may be found in [10, 11] and a detailed treatment in [9].

A previous, comparative evaluation of these approaches [13] indicated that UML has
benefits for object-oriented code design (e.g. implementation detail, including behavior),
while ORM has advantages for conceptual data modeling (e.g. semantic stability,
graphical expressibility; clarity and validation mechanisms). This result is perhaps not
surprising, given that UML is primarily intended to support object-oriented software
design, while ORM is intended primarily for conceptual analysis of data. There is no
question that UML provides more complete support than ORM does for developing
object-oriented code. However, UML is also promoted for conceptual data analysis and
designing database applications in general [3], and it is in this area that we believe ORM is
superior. This paper further examines the relative strengths and weaknesses of ORM and
UML for data modeling, focusing on attribute multiplicity (section 2), association arity
(section 3), advanced constraints and subtyping (section 4). An earlier version of some of
this work and related topics is accessible in online form [12].

In [13] the following language design criteria, drawn from several sources (e.g. [17]),
were used to compare the data modeling capabilities of UML and ORM: expressibility;
clarity; semantic stability; semantic relevance; validation mechanisms; abstraction
mechanisms; formal foundation. The following alternative yardsticks for language design
are discussed in [1]: orthogonality; generality; parsimony; completeness; similarity;
extensibility; openness. Some of these criteria (e.g. completeness, generality, extensibility)
may be subsumed under expressibility. Language orthogonality, and to a lesser extent,
parsimony, may be viewed as sub-principles of clarity (a measure of how easy it is to
understand and use). To this list, we may add the sub-principle of convenience (how
convenient, suitable or appropriate a language feature is to the user). The analysis in
sections 2-4 pays especial attention to design principles of parsimony, orthogonality,
convenience, and expressibility. We also illustrate how metamodel extensibility can be
used to capture some features of one approach within the other (section 5). The conclusion
summarizes the main points and identifies topics for future research.

Multi-valued attributes

Language design often involves a number of trade-offs between competing criteria. One
well known trade-off is that between expressibility and tractability [18]: the more
expressive a language is, the harder it is to make it efficiently executable. Another trade-
off is between parsimony and convenience: although ceteris paribus, the fewer concepts the
better (cf. Occam’s razor), restricting ourselves to the minimum possible number of
concepts may sometimes be too inconvenient. For example, two-valued propositional
calculus allows for 4 monadic and 16 dyadic logical operators. All 20 of these operators
can be expressed in terms of a single logical operator (e.g. nand, nor), but while this might
be useful in building electronic components, it is too inconvenient for direct human

Data modeling in UML and ORM revisited 3

communication. For example, “not p” is far more convenient than “p nand p”. In practice,
we use several operators (e.g. not, and, or, if-then) since their convenience far outweighs
the parsimonious benefits of having to learn only one operator such as nand. When it
comes to proving meta-theorems about a given logic, it is often convenient to adopt a
somewhat parsimonious stance regarding the base constructs (e.g. treat “not” and “or” as
the only primitive logical operators), while introducing other constructs as derived (e.g.
define “if p then q” as “not p or q”). Similar considerations apply to modeling languages.

One basic question relevant to the parsimony-convenience trade-off is whether to use
the attribute construct in base modeling. A detailed argument in [13] favors a negative
answer to this question, and is not repeated here. ORM models attributes in terms of
relationships in its base model (for capturing, validating and evolving the conceptual
schema), while allowing attribute-views to be displayed in derived models (in this case,
compact views used for summary or implementation purposes). Traditional ER supports
single-valued attributes, while UML supports single-valued and multi-valued attributes.
Are multi-valued attributes a good idea in modeling? Let’s consider an example.

Suppose we wish to record the names of employees, as well as the sports they play (if
any). In ORM, we might model this situation as shown in Figure 1(a). ORM depicts entity
types as named, solid ellipses, value types as named broken ellipses, and associations as
named sequences of role boxes. If an entity type has a simple reference scheme, this may
be shown implicitly in parentheses below the entity type name, or shown explicitly as a
reference association. The implicit notation does not denote an attribute; it is just
shorthand for the reference association. For example, “Sport(name)” abbreviates the
injective association Sport is identified by SportName. The black dot is a mandatory role
constraint indicating that each employee has a name. The absence of a mandatory role dot
on the first role of the Plays fact type indicates that this role is optional (it is possible that
some employee plays no sport). The arrow-tipped bar spanning the first role of Employee
has EmpName is a uniqueness constraint indicating that each employee has at most one
name. The uniqueness constraint spanning both roles of the plays predicate indicates this
association is m:n (an employee may play many sports, and vice versa).

Figure 1: Employee plays Sport depicted as (a) ORM fact type and (b) UML multi-valued attribute.

Employee
(empNr)

EmpNamehas

plays / is played by
Sport

(name)

101 Smith J
102 Jones E
103 Smith J

102 judo
103 judo
103 soccer

(a) Employee

empNr {P}
empName
sports [0..*]

(b)

101: Employee

empNr = 101
empName = 'Smith J'
sports = null

102: Employee

empNr = 102
empName = 'Jones E'
sports = ('judo')

103: Employee

empNr = 103
empName = 'Smith J'
sports = ('judo', 'soccer')

is of

Data modeling in UML and ORM revisited 4

One way of modeling the same situation in UML is shown in Figure 1(b). In the
absence of any standard UML notation for primary reference, we use “{P}” for this
purpose. The information about who plays what sport is modeled as the multi-valued
attribute “sports”. The “[0..*]” appended to this attribute is a multiplicity constraint
indicating how many sports may be entered here for each employee. The “0” indicates
that it is possible that no sports might be entered for some employee. Unfortunately, the
UML standard uses a null value for this case, just like the relational model. The presence of
nulls in the base UML model exposes users to implementation rather than conceptual
issues, and adds considerable complexity to the semantics of updates and queries [7, 8].
By restricting its base structures to elementary fact types, and eschewing attributes, ORM
avoids the notion of null values, enabling users to understand models and queries in
terms of simple 2-valued logic. The “*” in “[0..*]” indicates there is no upper bound on the
number of sports of a single employee. In other words, an employee may play many
sports, and we don’t care how many. The “0..*” constraint may be abbreviated as “*”.

 As Figure 1 shows, ORM allows sample populations to be displayed as fact tables,
while UML shows populations as a set of object diagrams. Notice how much easier it is to
check the constraints on the ORM diagram than on the UML diagram.

UML gives us the choice of modeling a multi-valued attribute as an association (as in
ORM). For conceptual analysis and querying, this choice helps us verbalize, visualize and
populate the associations. It also enables us to express various constraints involving the
“role played by the attribute” in standard notation, rather than resorting to some non-
standard extension (e.g. consider modeling the 1:n association Person is the best player of Sport
using a multi-valued attribute). Associations also offer more stability. For example,
consider the association Employee plays Sport in Figure 1(a). If we now want to record a skill
level for this play, we can simply objectify this association as Play, and attach the fact
type: Play has SkillLevel. Using an association class, a similar move can be made in UML if
the play feature has been modeled as an association. In Figure 1(b), however, this feature
has been modeled as the sports attribute; so this attribute needs to be removed and
replaced by the equivalent association before we can add the new details about skill level.

Another problem with multi-valued attributes is that queries (and updates and
constraints) on them need some way of extracting the components, and hence complicate
formulation for users. As a trivial example, compare queries Q1, Q2 expressed in ORM’s
ConQuer language [4, 4] with their counterparts in OQL (the Object Query language
proposed by ODMG [6]):

(Q1) List each Employee who plays Sport ‘judo’.

(Q2) List each Sport that is played by Employee 103.

(Q1a) select x.empNr from x in Employee where “judo” in x.sports

(Q2a) select x.sports from x in Employee where x.empNr = 103

Data modeling in UML and ORM revisited 5

Although this example is trivial, the use of multi-valued attributes in more complex
structures can make it harder for users to express their requirements. If we choose to
avoid multi-valued attributes in our conceptual model, we still have the option of using
them in the actual implementation. Both ORM and UML allow schemas to be annotated
with instructions to over-ride the default actions of whatever mapper is used to transform
the schema to an actual implementation. Since multi-valued attributes add complexity
without adding expressibility, we suggest they be avoided in the conceptual model that is
being validated by the domain expert.

Association arity

Some early versions of ORM [19], as well as most current versions of ER, restrict
associations to binaries (arity = 2). UML allows binary and longer associations (arity > 1).
ORM allows unary, binary and longer associations (arity > 0). Associations of any arity
may be transformed into equivalent binary associations (possibly nested), so no
expressibility is added by permitting non-binaries. On parsimony grounds, should we
then restrict ourselves to binaries? We think not, since the convenience of using non-
binaries is well worth it.

Consider the ternary association Room at Time is used for Activity, and suppose that each
room at a time is used for at most one activity, and that at most one room is used at a
given time for a given activity. Diagrams of this in both UML and ORM may be found in
[13]. We could binarize this ternary by objectifying the sub-association between room and
time and attaching activity to it as an attribute or association. Alternatively we could
objectify the sub-association between time and activity and attach room to it. We could
also create an artificial Schedule object type, and model the room, time and activity details
as binary associations or attributes. However these choices complicate validation by
verbalization and population, and make it difficult to express the constraints. Hence being
able to express the association directly as a ternary has obvious benefits at the conceptual
modeling phase.

What about unaries? You can replace them by binary associations, enumerated
attributes (e.g. Booleans) or subtypes, but this can make it harder to express constraints or
validate the model. As a trivial example, consider Figure 2(a), where the rule that patients
who smoke are cancer-prone is expressed directly in ORM using two unaries and a subset
constraint (shown as a dashed arrow). Figure 2(b) shows the same rule expressed in UML,
using boolean attributes and a note. Apart from diagrammatic simplicity, ORM
verbalizes the constraint formally as each Patient who smokes is cancer prone, and facilitates
checking the rule with same populations.

Data modeling in UML and ORM revisited 6

Figure 2: Patients who smoke are cancer prone, modeled in (a) ORM and (b) UML

Advanced constraints and subtyping

Figure 3 is the UML version of an OMT diagram used in [3, p. 68] to illustrate a subset
constraint between associations. There are some obvious problems with the multiplicity
constraints. For example, the “1” on the primary key association should be “0..1” (not all
columns belong to primary keys), and the “*” on the define association should
presumably be “1..*” (unless we allow tables with no columns). Assuming that tables and
columns are identified by oids or artificial identifiers, the subset constraint makes sense,
but the model is arguably sub-optimal since the primary key (PK) association and subset
constraint can be replaced by a Boolean isaPKfield attribute on Column.

Figure 3: Spot anything wrong?

From an ORM perspective, heuristics lead us to initially model the situation using
natural reference schemes as shown in Figure 4. Here ColName denotes the local name of
the column in the table, and we have simplified reality by assuming tables may be
identified just by their name. As seen by the external uniqueness constraints (circled “u”),
two natural reference schemes for Column suggest themselves (name plus table, or position
plus table). We can choose one of these as primary, or instead introduce an artificial
identifier. The unary predicate indicates whether a column is, or is part of, a primary key.
If desired, we could derive the association Column is a primary key field of Table from the path:
Column is in Table and Column isaPKcol (the subset constraint from the previous model is then
implied).

Patient
(nr)

is cancer prone

smokes

Patient

patientNr {P}
isCancerProne
isSmoker

{Patient.isSmoker = false
 or
 Patient.isCancerProne = true}

(a) (b)

ColumnTable
Define {ordered}

primaryKeyField
1

1

*
*{subset}

Data modeling in UML and ORM revisited 7

Figure 4: Alternative ORM model for schema shown in Figure 3

What is interesting about this example is not that the authors of the earlier model may
have made some trivial errors with constraints, but rather the difference in modeling
approaches. Most UML modelers seem to assume that oids will be used as identifiers in
their initial modeling, whereas ORM modelers like to expose natural reference schemes
right from the start, and populate their fact types accordingly. These different approaches
often lead to different solutions. The main thing is to first come up with a solution that is
natural and understandable to the domain expert, because here is where the most critical
phase of model validation should take place. Once a correct model has been determined,
optimization guidelines can be used to enhance it.

Another feature of the example is worth mentioning. The UML solution in Figure 3
uses the annotation “{ordered}” to indicate that a table is comprised of an ordered set (i.e. a
sequence with no duplicates) of columns. In the ORM community, a long-standing debate
has considered what is the best way to deal with collection type constructors (e.g. set, bag,
sequence, unique sequence) at the conceptual level (e.g. [16]). Our view is that such
constructors should not appear in the base conceptual model. Hence the use of Position in
Figure 4 to convey column order (the uniqueness of the order is conveyed by the
uniqueness constraint on Column has Position). Keeping fact types elementary has so many
advantages (e.g. validation, constraint expression, flexibility and simplicity) that it seems
best to relegate constructors to derived views. Constructors may also be added as an
adornment to a pure conceptual model to specify implementation choices.

In ORM, an equality constraint between two compatible role sequences is shorthand for
two subset constraints (one in either direction), and is shown as a double-headed arrow.
Such a constraint indicates that the populations of the role-sequences must always be
equal. If two roles played by an object type are mandatory, then an equality constraint
between them is implied (and hence not shown). As a simple example of an equality
constraint, consider Figure 5(a). Here the equality constraint indicates that if a patient’s
systolic blood pressure is measured, so is his/her diastolic blood pressure (and vice
versa). In other words, either both measurements are taken, or neither. This kind of
constraint is fairly common. Less common are equality constraints between sequences of
two or more roles.

Column Table
(name)

ColName

Position
(nr)+

isaPKcol

u

u

has

is in

has

Data modeling in UML and ORM revisited 8

UML has no graphic notation for equality constraints. For whole associations we
could use two separate subset constraints, but this would be messy. We could add a new
notation, using “{equality}” besides a dashed arrow between the associations, but this
notation would be unintuitive, since the direction of the arrow would have no significance
(unlike the subset case). In general, equality constraints in UML would normally be
specified as textual constraints (in braced comments). For our current example, the two
blood pressure readings would typically be modeled as attributes of patient, and hence a
textual constraint is attached to the Patient class as shown in Figure 5(b). This is awkward
compared to the corresponding ORM constraint (graphic or verbalized). The situation
could also be modeled in UML using a subtype for patients with blood pressure tested, or
by introducing a blood pressure class with the pressures shown as attributes; however
these approaches are rather artificial, and hinder validation.

Figure 5: A simple equality constraint modeled in (a) ORM and (b) UML

In [13] it was shown that, apart from validation benefits, ORM’s graphical constraint
language is more expressive for conceptual data modeling than UML’s graphical
constraint notation (excluding notes). ORM’s notation is also more orthogonal and general
than UML’s. To begin with, ORM mandatory constraints may be applied to a set of one or
more roles (each object of that type must play at least of the indicated roles). UML allows
mandatory constraints to be applied only to single association roles or single attributes, by
declaring a minimum multiplicity above 0: for attributes, 1 is the default minimum
multiplicity, but for association roles 0 is the default minimum. ORM’s exclusion
constraint (shown as ⊗) may be applied to any set of compatible role sequences, indicating
at most one of these can be instantiated at a time, and its subset and equality constraints
may be applied between any pair of compatible role sequences. UML allows subset
constraints only between whole associations, and the only form of an exclusion constraint
that it does provide is an exclusive-or constraint between single roles (shown as {xor},
with the meaning that exactly one is played). In ORM, an xor constraint is declared by
orthogonally combining an exclusion constraint with a disjunctive mandatory role
constraint.

In principle, an inclusive “{or}” constraint could be added to UML to express a
mandatory disjunction between association roles; but this would not enable us to express
a mandatory disjunction between attributes (or between association roles and attributes).
A similar comment applies if we wish to extend UML with a mutual exclusion constraint.

Patient
(nr)

BloodPressure
(mmHg)+

PatientName

has systolic-

has diastolic-

has

Patient

patientNr {P}
patientName
systolicBP [0..1]
diastolicBP [0..1]

{Patient.systolicBP is not null
 and
 Patient.diastolicBP is not null
 or
 Patient.systolicBP is null
 and
 Patient.diastolicBP is null}

(a) (b)

Data modeling in UML and ORM revisited 9

And so on. In contrast, ORM’s parsimonious decision to exclude attributes from its base
constructs enables it to achieve great expressibility without undue complexity.

ORM’s generic approach to constraints enables various classes of schema
transformations to be stated and visualized in their most general form. For example,
Figure 6 depicts a basic ORM equivalence [9, p. 331]. As an illustration of this theorem,
consider the fact types Driver has Status {main, backup} and Driver drives Car, where each driver
has exactly one status and drives exactly one car, and each car has two drivers, one main
and one backup. Now transform this schema into the 1:1 fact types Driver is main driver of Car
and Driver is backup driver of Car, where each driver plays exactly one role and each car plays
two roles [9, p. 330]. For a formal discussion of ORM schema equivalence and
optimization, see [15].

Figure 6: A basic schema equivalence in ORM

Both UML and ORM support subtyping, including multiple inheritance, using
substitutability (“is-a”) semantics. Both show subtypes outside, connected by arrows to
their supertype(s), and allow declaration of constraints between subtypes such as
exclusion and totality. In ORM, a subtype inherits all the roles of its supertypes. In UML, a
subclass inherits all the attributes, associations and operations/methods of its
supertype(s). Since our focus is on data modeling, not behavior modeling, we restrict our
attention to inheritance of static properties (attributes and associations), ignoring
operations or methods.

Subtypes are used in data modeling to assert typing constraints, encourage reuse of
model components and show a classification scheme (taxonomy). In this context, typing
constraints ensure that subtype-specific roles are played only by the relevant subtype.
Using subtypes to show taxonomy is of little use, since taxonomy is often more efficiently
captured by predicates. For example, the fact type Person is of Sex {male, female} implicitly
provides the taxonomy for the subtypes MalePerson and FemalePerson.

Like other ER notations, UML provides only weak support for defining subtypes. A
discriminator label may be placed near a subtype arrow to indicate the basis for the
classification. For example, Figure 7 includes a “sex” discriminator to specialize Person
into MalePerson and FemalePerson. This attribute is based on the enumerated type
Sexcode, which has been defined using the stereotype «enumeration», and listing its
values as attributes.

B

A

C

T

R

{b1,...,bn}

CA

S1

Sn

Each Si corresponds to R where T is restricted to B = bi

PSG2:

Data modeling in UML and ORM revisited 10

Figure 7: Subtyping in UML

By itself, this model fails to ensure that instances populating these subtypes have the
correct sex. For example, there is nothing to stop us populating MalePatient with some
patients that have the value ‘f’ for their sexcode. ORM overcomes this problem by
requiring that formal subtype definitions be declared for all subtypes. These definitions must
refer to roles played by the supertype(s). An ORM version of the correct schema is shown
in Figure 8, together with a satisfying population. Note that an ORM partition (exclusion
and totality) constraint is implied by the combination of the subtype definitions and the
three constraints on the fact type Patient is of Sex.

Figure 8: Formal subtype definitions are needed, and subtype partition constraints are implied

While the subtype definitions in Figure 8 are trivial, in practice more complicated
subtype definitions are sometimes required. As a basic example, consider a schema with
the fact types City is in Country, City has Population, where certain facts are to be recorded
only for US cities with over a million people. The required subtype, LargeUScity, may be
formally defined in ORM using the following ConQuer expression:

each LargeUScity is a City that is in Country ‘US’ and has Population > 1000000

Patient

patientNr : Integer {P}
sex : Sexcode

«enumeration»
 Sexcode
m
f

sex

MalePatient

prostateStatus [0..1]

FemalePatient

nrPregnancies

{disjoint, complete}

Patient
(nr)

Male
Patient

Female
Patient

Sex
(code)

{'M','F'}

101 M
102 F
103 M

is of

Prostate
Status
(name)

has

OK 101

NrPregnancies
+

102 5

had

each MalePatient is a Patient who is of Sex 'M'
each FemalePatient is a Patient who is of Sex 'F'

Data modeling in UML and ORM revisited 11

There does not seem to be any convenient way of doing this in UML, at least not with
discriminators. One could perhaps add a derived Boolean isLarge attribute, with an
associated derivation rule in OCL, and then add a final subtype definition in OCL, but
this would be less readable than the ORM definition above. For a detailed ORM
perspective on these and other subtyping issues see [9, 14].

Meta-modeling

Because of ORM’s greater expressive power, it is reasonably straightforward to capture
UML models with an ORM framework. Though less convenient, it is possible to work in
the other direction as well. To begin with, UML’s graphic constraint notation can be
supplemented by textual constraints in a language of choice (e.g. OCL). Moreover, the
UML metamodel itself has built-in extensibility that allows many constraints specific to
ORM to be captured within a UML based repository. As an example, the ORM model in
Figure 9(a) contains four constraints numbered C1..C4, and four roles numbered r1..r4.
Constraint C1 allows that a person wrote many books, and that a book was written by
many persons. Constraint C2 asserts that each book was proofed by at most one person.
Constraint C3 declares that if a book was proofed by somebody, it was also written by
somebody (in this example, recorded authorship is optional, e.g. a book might be planned
before assigning writers). The UML metamodel fragment in Figure 9(b) extends the
standard UML metamodel by adding constraintNr, constraintKind and elementNr
attributes, and adding ArgConstraint as a subtype along with the nrArguments attribute.

Figure 9: These ORM constraints (a) may be stored in an extended UML metamodel fragment (b)

The full UML metamodel [20] is very large, and we have included only that fragment
relevant to our example. The attribute constraintKind stores the kind of constraint (subset,
exclusion, mandatory etc.) and nrArguments is the number of arguments governed by the
constraint. In this example, each argument is a sequence of one or more roles (in UML, a
role is called an AssociationEnd). The four ORM constraints may now be stored as in the
following object-relation:

Person Book

wrote / was written by

proofed / was proofed by

r1 r2

r3 r4

C1

C2

C3C4

 Constraint
 constraintNr {P}
 constraintKind

ModelElement
elementNr {P}

{ordered}

* 1..*

AssociationEnd
 ArgConstraint
 nrArguments

Spans

Association

2..*

1

{ordered}

(a) (b)

Data modeling in UML and ORM revisited 12

Constraint: constraintNr constraintKind nrArguments argumentsSpanned

C1

C2

C3

C4

uniquenessInternal

uniquenessInternal

subset

exclusion

1

1

2

2

(r1, r2)

(r4)

(r4, r2)

(r1, r2, r3, r4)

Although nrArguments is partly determined by constraintKind, it is not fully
determined (e.g. exclusion constraints may have two or more arguments). The argument
list is divided by the number of arguments to determine the individual arguments, and
constraintKind is used to determine the appropriate semantics. Though this simple
example illustrates the basic idea, transforming the complete ORM metamodel into UML
is complex. For example, as the UML metamodel fragment indicates, UML associations
must have at least two roles (association ends), so rather artificial constructs must be
introduced for dealing with unaries.

Conclusion

This paper extended a prior comparative evaluation of the data modeling facilities within
UML and ORM, by examining multi-valued attributes, association arities, advanced
constraints and subtyping, with particular reference to the language design principles of
parsimony, expressibility, orthogonality and convenience. The following parsimonious
approach to multi-valued attributes seems judicious: multi-valued attributes should be
avoided in conceptual analysis, but may be used at the implementation level. A similar
view was reached with regard to collection types (sets, bags etc.). Convenience dictates
that associations of any arity (1 or above) should be allowed in conceptual modeling.
ORM’s constraint notation was found to be more orthogonal, partly because its notion of
role unifies a concept treated as two separate notions in UML (within attributes and
associations) and partly because its constraint primitives were chosen to apply
orthogonally over sets of sequences or one or more roles. In spite of ORM’s graphical
advantages, UML can be used to capture specific ORM constraints either by use of a
supplementary textual language, or by adapting its underlying metamodel using its built-
in extensibility mechanisms.

 For data modeling, ORM offers several advantages at the conceptual analysis phase,
while UML provides greater functionality for specifying a data model at an
implementation level suitable for the detailed design of object-oriented code. Hence both
methods have value, and a complete development cycle may well profit by using ORM as
a front end to UML. Automatic transformations between the two notations seems
desirable, and research is currently under way to provide this. Once this support becomes
available, empirical studies are planned to study why and how practitioners choose
and/or integrate these modeling methods in practice.

Data modeling in UML and ORM revisited 13

References

1. Bentley, J. 1988, ‘Little languages’, More Programming Pearls, Addison-Wesley, Reading MA, USA.

2. Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

3. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database Applications,
Prentice Hall, New Jersey.

4. Bloesch, A. & Halpin, T. 1996, ‘ConQuer: a conceptual query language’, Proc. 15th International
Conference on Conceptual Modeling ER'96 (Cottbus, Germany), B. Thalheim ed., Springer LNCS
1157 (Oct.) 121-133.

5. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proc. 16th Int. Conf. on
Conceptual Modeling ER'97 (Los Angeles), D. Embley, R. Goldstein eds, Springer LNCS 1331
(Nov.) 113-126.

6. Cattell, R. & Barry, D. 1997, The Object Database Standard: ODMG 2.0, Morgan Kaufmann, San
Francisco, CA.

7. Date, C. 1995, Relational Database Writings 1991-1994, Addison-Wesley, Reading MA, USA (see
chapter 9).

8. Date, C. & Darwen, H. 1998, Foundation for Object/Relational Databases: the Third Manifesto,
Addison-Wesley, Reading, MA, USA .

9. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999),
WytLytPub, Bellevue WA, USA.

10. Halpin, T. 1998, ‘Object Role Modeling: an overview’, white paper, www.orm.net.

11. Halpin, T. 1998, ‘Object Role Modeling (ORM/NIAM)’, Handbook on Architectures of Information
Systems, P. Bernus, K. Mertins & G. Schmidt eds, Springer-Verlag, Berlin, 81-101.

12. Halpin, T. 1998-9, ‘UML data models from an ORM perspective’, Journal of Conceptual Modeling,
article series published online at www.inconcept.com.

13. Halpin, T. & Bloesch, A. 1998, ‘A comparison of UML and ORM for data modeling’, Proc.
EMMSAD-98: 3rd IFIP8.1 Int. Workshop on evaluation of modeling methods in systems analysis and
design, K. Siau, Y. Wand eds, Pisa, Italy.

14. Halpin, T. & Proper, H. 1995, ‘Subtyping and polymorphism in object-role modelling’, Data &
Knowledge Engineering 15, 3 (June), 251-281.

15. Halpin, T. & Proper, H. 1995, ‘Database schema transformation and optimization’, OOER’95:
Object-Oriented and Entity-Relationship Modeling, Springer LNCS, 1021 (Dec.) 191-203.

16. ter Hofstede, A. & van der Weide, T. 1994, ‘Fact orientation in complex object role modelling
techniques’, Proc. First Int. Conf. on Object-Role Modelling (Magnetic Island, Australia, July), T.
Halpin, R. Meersman eds, 45-59.

Data modeling in UML and ORM revisited 14

17. ISO 1982, Concepts and Terminology for the Conceptual Schema and the Information Base, J. van
Griethuysen ed., ISO/TC97/SC5/WG3-N695 Report, ANSI, New York.

18. Levesque, H. 1984, ‘A fundamental trade-off in knowledge representation and reasoning’, Proc.
CSCSI-84, London, Ontario, 141-52.

19. Mark, L. 1987, ‘The binary relationship model – 10th anniversary’, Tech. Report CS-TR-1933,
Univ. of Maryland.

20. OMG UML Revision Task Force, OMG Unified Modeling Language Specification,
http://uml.systemhouse.mci.com/.

21. Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Modeling Language Reference Manual,
Addison-Wesley, Reading MA, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

