
Verbalizing Business Rules: Part 9

Terry Halpin
Northface University

Business rules should be validated by business domain experts, and hence specified using concepts and
languages easily understood by business people. This is the ninth in a series of articles on expressing
business rules formally in a high-level, textual language. The first article [4] discussed criteria for a
business rules language, and verbalization of simple uniqueness and mandatory constraints on binary
associations. Article two [5] examined hyphen-binding, and verbalization of internal uniqueness constraints
that span a whole association, or that apply to n-ary associations. Article three [6] covered verbalization of
basic external uniqueness constraints. Article four [7] considered relational-style verbalization of external
uniqueness constraints involving nesting or long join paths, as well as attribute-style verbalization of
uniqueness constraints and simple mandatory constraints. Article five [8] discussed verbalization of
mandatory constraints on roles of n-ary associations, and disjunctive mandatory constraints (also known as
inclusive-or constraints) over sets of roles. Article six [9] considered verbalization of value constraints.
Article seven [10] examined verbalization of subset constraints. Article eight [11] discussed verbalization
of equality constraints. This ninth article discusses verbalization of exclusion constraints.

Verbalization of exclusion constraints between single roles

Figure 1 shows an ORM schema for recording when an application is submitted, and optionally when it is
approved or rejected. The circled “X” connecting the approval and rejection roles played by Application
indicates that for each state of the business domain, the population of these two roles is mutually exclusive.
In other words, if we record the fact that an application was approved on some date, we cannot at the same
time record the fact that that application was also rejected on some (possibly other) date. This illustrates a
simple exclusion constraint between two fact type roles. An exclusion constraint may be applied only if the
roles are compatible (i.e. based on identical or overlapping types).

Application
(Nr)

Date
(mdy)

was submitted on

was approved on

was rejected on

Figure 1 An exclusion constraint between single roles.

 Like all the constraints considered previously, the exclusion constraint is a static constraint, not a
dynamic constraint. This schema allows that a rejected application might be re-evaluated and approved, so
long as the previous rejection fact is deleted in the same (conceptual) transaction as the addition of the
approval fact. Suppose instead we require that if an application is rejected, it cannot be re-evaluated and
accepted (a new application must be submitted if approval is still sought). This further requirement applies
a dynamic restriction that goes beyond the simple exclusion constraint (e.g. we might require that any
approval or rejection fact be frozen). A treatment of dynamic constraints is postponed till a later article.

The static exclusion constraint may be formally verbalized in any of the following ways. The wording
reflects the static nature of the constraint, restricting what is (conceptually) recorded in any business state.

No Application that was approved on a Date also was rejected on a Date.

For each Application, at most one of the following is true:
that Application was approved on a Date;
that Application was rejected on a Date.

1

In the first verbalization, the word “also” is optional. The second verbalization should be used if the
exclusion constraint applies to more than two roles. As usual, the pronoun “that” may be replaced by “who”
or “which”, the quantifier “a” may be replaced by “some”, “at least one”, or “an”, and “for each” may be
replaced by “given any”.

Figure 2(b) shows a UML class diagram for the application example. The “{P}” annotation is a non-
standard extension to UML to express the preferred identifier (and hence its uniqueness constraint). As
there is no graphic way of depicting the exclusion constraint in UML, it is expressed in OCL within an
attached note. Because the note is attached to the Application class, this is understood to provide the
context for the OCL constraint.

Application
(Nr)

Date
(mdy)

was submitted on

was approved on

was rejected on

[approvalDate]

[rejectionDate]

(a)

nr {P}
submissionDate
approvalDate [0..1]
rejectionDate [0..1]

Application(b)

{approvalDate -> isEmpty()
 or
 rejectionDate -> is Empty}

[submissionDate]

Figure 2 The Figure 1 schema expressed as (a) ORM schema with role names, (b) UML class diagram.

As the OCL specification is too mathematical in nature for non-technical domain experts, a higher

level verbalization is required for the exclusion constraint, such as the relational-style verbalization given
earlier. The following attribute-style verbalizations may also be used. These alternative verbalizations may
also be applied to the ORM schema, so long as the relevant role names are added, as in Figure 2(a).

 For each Application:
 approvalDate is absent or rejectionDate is absent.

For each Application, at most one of the following exists:
 approvalDate;
 rejectionDate.

An n-ary version of an exclusion constraint may be applied to a set of three or more compatible roles

(or role-sequences). This is equivalent to multiple binary exclusion constraints between all the pairs of roles
(or role-sequences).

Verbalization of exclusive-or constraints

In some cases, if an exclusion constraint applies between single roles, then so does an inclusive-or
constraint (see [8]). In this case, the combination of both constraints is known as an exclusive-or constraint.
A simple example is shown in Figure 3, declaring that each person is a male or female but not both. ORM
allows the two constraints to be either combined orthogonally for display purposes, or displayed separately,
as shown.

Person
(SSN)

is male

is female

Person
(SSN)

is male

is female

(a) (b)

Figure 3 An exclusive-or constraint combines an inclusive-or constraint with an exclusion constraint.

2

 Internally, the exclusive-or constraint is treated as two constraints (allowing one to be dropped without
the other). It may be verbalized as two separate constraints (using patterns discussed previously for
inclusive-or and exclusion), or more compactly as a single constraint as follows.

 Each Person is male or is female but not both.

For each Person, exactly one of the following is true:
that Person is male;
that Person is female.

 Figure 4 shows three different ways of modeling the example in UML. In Figure 3(a) the is-male and
is-female predicates are modeled by optional Boolean attributes. As discussed next, UML does have a
graphical exclusive-or constraint, but it is defined between associations, not attributes. So here the
exclusive-or constraint is specified as a note in OCL. The ORM verbalizations given above provide a less
technical verbalization. Figure 3(b) models the situation with one mandatory Boolean attribute (isMale),
using the setting isMale = false to capture is-female. Figure 3(c) uses an association to an enumeration type
for the two sex values.

ssn {P}
isMale [0..1]: Boolean
isFemale [0..1]: Boolean

Person

{isMale = true
 xor
 isFemale = true }

ssn {P}
isMale: Boolean

Person

ssn {P}

Person

male
female

<<enumeration>>
Sex* 1

(a) (b) (c)

Figure 4 Different ways of modeling the previous schema in UML.

 UML provides a graphical exclusive-or constraint between associations, attaching “{xor}” to a dotted
line between the relevant associations. As explained earlier however, an xor constraint only makes sense
between compatible association roles. Using the UML notation, one may deduce the intended roles for the
constraint if these roles occur in binary associations, are played by the same class, and the other roles are
played by two different classes (e.g. Account is owned by Person xor Account is owned by Organization).
 If the other roles are played by the same class however, the notation is ambiguous. For example,
consider the ORM schema in Figure 5(a). The exclusive-or constraint declares that each vehicle was either
purchased (from some company) or leased (from some company) but not both. Now look at the UML class
diagram in Figure 5(b). Here the xor constraint is declared between the two associations, not between roles.
We have no formal way to determine which roles are intended, so the constraint must be disambiguated by
an additional textual constraint, here specified in OCL within a note. Even with this note, it is unclear
whether the note is there to disambiguate the graphical xor constraint, or to add a second xor constraint. It
is best to never display UML’s graphical xor constraint in such cases, as the wrong interpretation might be
taken. Unfortunately, this fundamental problem with the semantics of UML’s xor constraint is still present
in the latest version (UML 2.0). For validation with domain experts, a high level verbalization is safest.

Vehicle
(VIN)

Company
(Name)

was purchased from

was leased from

(a) (b)

vin {P}
...

Vehicle

name {P}
...

Company
*
*

0..1
0..1

vehicleSold seller

vehicleLeased lessor

{xor}

{seller -> notEmpty()
 xor
 lessor -> notEmpty()}

Figure 5 An xor constraint in ORM that is graphically ambiguous in UML.

3

Verbalization of exclusion constraints between role sequences

Exclusion constraints may also be specified between compatible role sequences (of two or more roles).
Figure 6 shows an ORM schema for a simple example, where each role sequence is a pair of roles
comprising a full association. The constraint indicates that nobody may author and review the same book.

Person
(SSN)

Book
(ISBN)

wrote

reviewed

[author] [bookAuthored]

[reviewer] [bookReviewed]

Figure 6 An exclusion constraint between two role-sequences, each of which contains 2 roles.

This pair-exclusion constraint may be verbalized in relational style as follows. The second and third
alternatives scale easily to cases with more than two role-sequences. The third case caters best for cases
where the same object type plays more than one role in the role sequence.

No Person wrote and reviewed the same Book.

For each Person and Book, at most one of the following is true:
that Person wrote that Book;
that Person reviewed that Book

For each Person1 and Book1, at most one of the following is true:
Person1 wrote Book1 ;
Person1 reviewed Book1.

If inverse readings are supplied for the fact types, these may be used to provide alternative
verbalizations, e.g. No Book was written by and reviewed by the same Person. Attribute-style verbalizations may be
obtained by using role names. The use of singular names for the roles does not imply single-valued results
(e.g. for each person, bookAuthored and bookReviewed each return a set). The attribute-style
verbalizations differ depending on which object type is used as the base of the verbalization. For example,
starting with Person we may verbalize the exclusion constraint thus:

For each Person, the following sets are disjoint:

bookAuthored;
bookReviewed.

 Figure 7 depicts the same example in UML. As UML has no graphical exclusion constraint (except
within an xor constraint), the exclusion constraint must be specified textually. Here rather than using OCL,
the constraint is informally expressed as a note attached to the Person class. Alternatively, the constraint
could have been expressed by a note attached to the Book class (author intersect reviewer = { }), or by a
note attached to both the associations.

ssn {P}
...

Person

isbn {P}
...

Bookauthor bookAuthored

bookReviewedreviewer

* *
* *

bookAuthored intersect bookReviewed = { }

Figure 7 The previous example modeled in UML, with the exclusion constraint expressed informally.

4

5

 Conceptually, the exclusion constraint under consideration applies between two associations,
regardless of whether we verbalize it directly in terms of the associations, or base it on a class or object
type at one end, using attribute-style wording. If the m:n conceptual fact types are implemented as relation
schemes in a relational database system, then the constraint needs to be checked on insert or update to
either relation scheme. If the conceptual fact types are implemented as pointer sets in a class model, the
constraint needs to be checked on creation or update of objects in each class. Such implementation details
are irrelevant to validating the business rule with the domain expert, who simply confirms whether the high
level verbalization accurately captures the semantics of the business constraint.

The verbalization patterns discussed above for exclusion constraints may be extended in obvious ways
to cater for other cases, where each role-sequence may contain more than two roles from all or part of an
association, or is projected from a role path spanning multiple associations.

That completes our coverage of exclusion constraints and their verbalization. The next article
considers frequency and ring constraints.

References

1. Halpin, T. A. 2001, Information Modeling and Relational Databases, Morgan Kaufmann, San

Francisco.
2. Halpin, T.A. 2002, ‘Join Constraints’, Proc. Seventh CAiSE/IFIP-WG8.1 International Workshop on

Evaluation of Modeling Methods in Systems Analysis and Design, eds. T. Halpin, J. Krogstie, K. Siau,
Toronto, pp. 121-131, URL: http://www.orm.net/pdf/JoinConstraints.pdf.

3. Halpin, T. A. 2002, ‘Metaschemas for ER, ORM and UML Data Models: A Comparison’, Journal of
Database Management, vol. 13, No. 2, pp. 20-29, Idea Publishing Group, Hershey PA, USA.

4. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 1’, Business Rules Journal, Vol. 4, No. 4 (April
2003), URL: http://www.BRCommunity.com/a2003/b138.html.

5. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 2’, Business Rules Journal, Vol. 4, No. 6 (June
2003), URL: http://www.BRCommunity.com/a2003/b152.html.

6. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 3’, Business Rules Journal, Vol. 4, No. 8
(August 2003), URL: http://www.BRCommunity.com/a2003/b163.html.

7. Halpin, T. A. 2003, ‘Verbalizing Business Rules: Part 4’, Business Rules Journal, Vol. 4, No. 10
(October 2003), URL: http://www.BRCommunity.com/a2003/b172.html.

8. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 5’, Business Rules Journal, Vol. 5, No. 2
(February 2004), URL: http://www.BRCommunity.com/a2004/b179.html.

9. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 6’, Business Rules Journal, Vol. 5, No. 4 (April
2004), URL: http://www.BRCommunity.com/a2004/b183.html.

10. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 7’, Business Rules Journal, Vol. 5, No. 7 (July,
2004), URL: http://www.BRCommunity.com/a2004/b198.html.

11. Halpin, T. A. 2004, ‘Verbalizing Business Rules: Part 8’, Business Rules Journal, Vol. 5, No. 9
(September, 2004), URL: http://www.BRCommunity.com/a2004/b205.html.

12. Halpin, T., Evans, K., Hallock, P. & MacLean, B. 2003, Database Modeling with Microsoft Visio for
Enterprise Architects, Morgan Kaufmann, San Francisco.

13. Object Management Group 2003, UML 2.0 Infrastructure, URL: http://www.omg.org/uml.
14. Object Management Group 2003, UML 2.0 Object Constraint Language, URL:

http://www.omg.org/uml.

http://www.brcommunity.com/a2003/b138.html
http://www.brcommunity.com/a2003/b152.html
http://www.brcommunity.com/a2003/b152.html
http://www.brcommunity.com/a2003/b172.html
http://www.brcommunity.com/a2004/b198.html

