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Business rules should be validated by business domain experts, and hence specified in a language easily 
understood by business people. This is the fourteenth in a series of articles on expressing business rules 
formally in a high-level, textual language. The first article [2] discussed criteria for a business rules 
language, and verbalization of simple uniqueness and mandatory constraints on binary associations. Article 
two [3] examined hyphen-binding, and verbalization of internal uniqueness constraints that span a whole 
association, or that apply to n-ary associations. Article three [4] covered verbalization of basic external 
uniqueness constraints. Article four [5] considered relational-style verbalization of external uniqueness 
constraints involving nesting or long join paths, as well as attribute-style verbalization of uniqueness 
constraints and simple mandatory constraints. Article five [6] discussed verbalization of mandatory 
constraints on roles of n-ary associations, and disjunctive mandatory constraints (also known as inclusive-
or constraints) over sets of roles. Article six [7] considered verbalization of value constraints. Article seven 
[8] examined verbalization of subset constraints. Article eight [9] discussed verbalization of equality 
constraints. Article nine [10] covered verbalization of exclusion constraints. Article ten [11] dealt with 
verbalization of internal frequency constraints on single roles. Article eleven [12] considered verbalization 
of multi-role, and external, frequency constraints. Article twelve [13] discussed verbalization of ring 
constraints. Article thirteen [14] covered verbalization of basic subtype constraints. Article fourteen [15] 
discussed the need for subtype definitions, and how to verbalize them. This article considers the 
verbalization of basic derivation rules.  
 
Derived Fact Types  
 
Many business domains include information that is derived from other information. As a simple example, 
suppose we are interested in knowing the height, width, and area of various windows. If we know the 
height and width of a window, we can compute its area simply by multiplying its height by its width.  
Figure 1 models this situation in ORM 2 [16] and UML [17] notations. From an ORM perspective, we have 
three fact types: Window has height of Length; Window has width of Length; and Window has Area. The asterisk “*” 
postfix on the area fact type indicates that it is derived, and the textual derivation rule declares how it is 
derived from the other fact types. In UML, the three fact types are all depicted as attributes. A slash “/” 
prefix indicates the derived attribute, and an attached note provides the derivation rule. The {P} notation in 
the UML figure is a non-standard extension indicating preferred identification scheme (and hence 
mandatory and unique). As industrial versions of Entity-Relationship (ER) modeling typically provide no 
graphical means of depicting derived information, we ignore them in this article. 
 
 

Window
(Id)

has height of

has width of
Length
(cm)

has *

Area
(sq_cm)

[height]

[width]

id {P}
height
width
/area

Window
(a) (b)

{area = height * width}* For each Window:
       area = height * width.

[area]

 
 
 
 
 
 
 
 
 

Figure 1 Derived fact type for area in (a) ORM 2 and (b) UML notation. 

In this example, both ORM and UML express the derivation rule in attribute style, where area, height 
and width may be viewed as attributes of Window. To enable this, the ORM schema includes the relevant 
role names (shown in square brackets) to be used as attribute names in rule verbalization. ORM uses a for-
each clause to declare the context of the rule. Within the rule, “*” denotes multiplication. 
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In ORM 2, a derivation rule may be specified in attribute style, relational style, or mixed style. 
Relational style verbalizes relationships directly uses predicate readings. For example, the derivation rule 
for area may be specified in relational style thus: 

 

 Define Window has Area(sq_cm) as  
  Window has height of Length1 and 
  Window has width of Length2 and 
  Area = Length1 * Length2. 
 

In cases like this where the derivation rule involves simple arithmetic, attribute style is typically more 
compact and readable than relational style. Mixed style allows fact types to be specified using predicate 
readings and role names within the same rule. 
 
Partly Derived Fact Types  
 
A fact type that is not derived using other fact types is said to be primitive. Here the height and width fact 
types are primitive, and the area fact type is derived. Notice that the equation area = height* width has three 
variables, with one degree of freedom. In principle, any of these three variables could have been chosen as 
derived, with the others primitive. For example, if we know the area and height, we can derive the width. 
And if we know the area and width, we can derive the height. At a more fundamental level then, the rule 
verbalization  

 

 For each Window: 
  area = height * width. 
 

may be considered a constraint, that restricts the possible triples of values that may be assigned to area, 
height, and width. Although “area” is mentioned first in the equation above, there is nothing in the 
underlying logic that forces us to say that this is the only quantity that can be derived. In principle, one 
could allow any two values in the triple to be entered (area and height, or area and width, or height and 
width), then use this constraint to determine the other value. To indicate this intent in ORM 2, each of the 
fact types is marked “*-” signifying partly derived, and the derivation rule is flagged this way too.  
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(Id)

has height of *-

has width of *-
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(cm)

has *-

Area
(sq_cm)

[height]

[width]

*- For each Window:
       area = height * width.

[area]

 
 
 
 
 
 
 
 
 

Figure 2 The fact types are partly derived: an instance of any one may be derived from the others.  

 
Using “iff” to abbreviate “if and only if”, the relational version of the rule may also be specified as a 

mere constraint thus: 
 

 Window has Area(sq_cm) iff  
  Window has height of Length1 and 
  Window has width of Length2 and 
  Area = Length1 * Length2. 
 

While it would be unusual to apply partial derivation in this window example, this technique is of 
practical use in applications such as loan selections, where one might want to enter, say, any two of 
percentage rate, loan amount, and desired loan term, to see what the other figure will be.  

 Once we decide that we will use the constraint simply to derive the area, this choice is reflected by 
marking the area fact type as fully derived in the schema diagram (with an asterisk in ORM, and a slash in 
UML). The left hand side of the attribute style equation, or the head of the relational style “iff” rule, is now 
understood to be the derived quantity, and the “Define as” relational version of the rule may also be used.   
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Dot Notation and Of-Notation 
 
When the derivation rule is based on conceptual joins rather than mathematical operations, the relational 
style of rule verbalization is often more natural. For example, see the ORM rule for deriving the fact type 
Person is an uncle of Person in Figure 3(a). Here subscripts are used to distinguish different occurrences of the 
Person variable. For simplicity, the relevant ring constraints [13] are omitted. In ORM, each fact type must 
have at least one relationship reading, whereas role names are optional. 
 A UML class diagram for this situation is shown in Figure 3(b). In UML, associations must have role 
names, whereas a relationship reading is optional. When roles of an association are played by instances of 
the same class, distinct role names must be provided to disambiguate expressions that use role names for 
navigating the schema, as in this example. Here both the uncle role and the nephewOrNiece role are 
derived. Their derivation rules make use of the dot notation familiar to programmers. 
 

Person

is an uncle of *

is a brother of

is a parent of

Person

(a) (b)

/uncle /nephewOrNiece
* *

*

*

brother

brotheredSibling
parent child*0..2

≤ 2

{Person.uncle = Person.parent.brother}
{Person.nephewOrNiece = Person.brotheredSibling.child}

* Person1 is an uncle of Person2 iff
       Person1 is a brother of some Person3

who is a parent of Person2

 
 
 
 
 
 
 
 
 
 

Figure 3 Derivation of Unclehood in (a) ORM and (b) UML. 
 

 As an alternative to the dot notation, ORM 2 allows the of-notation. This works in a similar way to the 
dot notation, except the order is reversed. For example, instead of “parent.brother” we have “brother of parent” 
(see Figure 4). Use of this notation requires that the relevant role names are supplied. In most cases, the of-
notation is likely to be more readable than the dot notation to non-technical business people.  
 
 

[uncle]

Person

is an uncle of *

is a brother of
[brother]

is a parent of
[parent]

≤ 2

* For each Person:
       uncle = brother of parent;
       nephewOrNiece = child of brotheredSibling.

[brotheredSibling]

[nephewOrNiece]

[child]

 
 
 
 
 
 
 
 
 

Figure 4 Use of role names and the of-notation  

 
Summary Derivations 
 
Many derivations are of a summary nature, where the information held in the derived fact type instance 
captures only part of the information in the fact type instances (primitive or derived) used to derive it. In 
such cases, there is only one choice as to which of many fact types may be selected for derivation (unlike 
the area equation discussed earlier). For example, you can derive a grade point average from a set of 
grades, but you can’t derive the set of grades from the average. Likewise, you can derive your age in years 
from your birth date and the current date, but not vice versa.  

As a classic business example, consider the line item schema shown in Figure 5. A line item is 
identified by combining its line number and its order (shown in ORM 2 by the circled double line, and in 
UML by an informal note). We compute line totals as the product of the quantity and unit price. Although 
unlikely, in principle we could have chosen instead to compute the quantity from the unit price and line 
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total. However, the total charge for the order however must be derived, since it is computed by summing 
the individual line totals for that order. We cannot derive the line totals from the total charge, since there 
are many possible sets of line totals that would result in the same total charge for the order. 
 
 has total charge of *

Order
(Nr)

Account
(Nr)

Transaction
(Nr)

MoneyAmount
(USD)

TransactionType
(Code)

is of

involves

yields balance of **

has / is on

[balance]

[amount]

** For each Transaction:
case type of

‘opn’:         balance := amount
‘dep’, ‘int’:  balance := account.balance + amount
‘wdl’, ‘fee’: balance := account.balance - amount

end

** For each Account:
       balance := balance of last transaction

[type]
{‘opn’, ‘dep’, ‘int’, ‘wdl’, ‘fee’}

has balance of **

[balance]

LineItem

LineNr

<< has << is on
MoneyAmount

(USD)

Item
(Nr)is for

has unit price of

has line total of **

[lineTotal]

[totalCharge]

Quantity
(Nr)

has

** For each LineItem:
       lineTotal = quantity * unitPrice.

* For each Order:
       totalCharge = sum(lineTotal of lineItem).

lineNr
quantity
unitPrice
/lineTotal

LineItem
nr {P}
/totalCharge

Order

nr {P}
...

Item

1

1

*

*

(lineNr, order)
 is unique

{lineTotal = quantity * unitPrice}

totalCharge =
sum(lineItem.lineTotal)

(a) (b)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5  Deriving line totals and order totals in (a) ORM and (b) UML. 

 
Lazy and Eager Evaluation 
 
Typically, instances of derived fact types are derived on query (the computation to derive them is not 
performed until requested). This is known as lazy evaluation (don’t evaluate until you have to). In such 
cases, the derived facts need not be stored. In rare cases however, the business may decide to derive on 
update, performing the calculation as soon as the underlying facts used in the derivation are updated. This 
is called eager evaluation. In such cases, the derived facts are actually stored. This is indicated in ORM by 
marking the fact type to be derived and stored with a double asterisk “**”.  

As a practical example, the ORM schema in Figure 6 declares that account balances are to be derived 
on update and then stored. This simplifies the derivation rule to compute balances, and enables better 
performance, since only the current transaction and the immediately previous transaction (if any) need to be 
accessed to compute the current balance. An historical record is maintained for transaction balances, while 
a single value is stored for the current account balance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Account balances are derived on update, and then stored.  
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A simplified specification of the derivation rules is shown. This assumes that the only types of 
transaction types are opn (open account with an initial, possibly zero deposit), dep (later deposit), int (interest 
earned), wdl (withdrawal), and fee (bank fee). Also, predefined semantics for last are assumed (based on the 
highest transaction number for the account). Though not shown here, this example also illustrates one of 
those rare cases requiring an immutable constraint (called “frozen” in UML) to make the transactions 
immutable, in this case for auditing purposes.  

While the syntax of the rules resembles that of a programming language, it is arguably still high level 
enough to be understood by a non-technical domain expert. Alternative syntaxes are possible to make the 
rules more readable. For example, “is assigned the value of” may be used instead of “:=”, and the case-clause 
may be replaced by a set of if-clauses. The syntax of ORM’s textual language for derivation rules and 
constraints is still being refined, so this is meant to be illustrative only. It is quiet a challenge to design a 
formal language that is rich enough to capture complex rules, while still being intelligible to non-technical 
people.   
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