
1 

Temporal Modeling: Part 4 
 

Terry Halpin 
Neumont University 

 
 
 
 
 
 
 
This is the fourth in a series of articles on the impact of time on the conceptual modeling of business 
domains. The first article [11] discussed the temporal data types instant (point in time), interval (duration 
of time), and period (anchored duration of time), classified temporal object types into once-only (e.g., Date) 
and repeatable (e.g., WeekDay) object types, and discussed four kinds of fact type: definitional (truth of 
instances is a matter of definition), once-only (instances correspond to a single event), repeatable (instances 
may correspond to multiple events) and time-deictic (the meaning of instances depends on the time of 
utterance/inscription). It then showed how to model temporal details about point events or period events 
underlying instances of once-only fact types that are unchangeable. The second article [12] examined the 
modeling of temporal information about events underlying changeable fact types (their nonnull fact 
populations may change over time, by replacing, adding, or deleting facts) that are initially functional (n:1 
or 1:1 associations). The third article [13] discussed how to maintain history of changeable fact types that 
are nonfunctional (e.g. m:n binaries, or higher arity fact types). 

This fourth article provides yet another way in UML 2 to maintain history of nonfunctional, 
changeable fact types, and then discusses rigid subtypes and role subtypes, and related dynamic constraints. 
Three graphical notations are used for examples: second generation Object-Role Modeling (ORM 2) [8, 9] 
as supported by the open source (Neumont ORM Architect) NORMA tool [4, 15]; the Unified Modeling 
Language (UML) [16]; and the Barker notation [1] for Entity-Relationship Modeling (ER) [3]. 
 
 
Another Way to Maintain History of Nonfunctional, Changeable Fact Types in UML 2 
 
The previous article [13] discussed three ways to maintain history of nonfunctional, changeable fact types, 
such as Employee visited Country: include a distinguishing temporal role as part of the identifier; introduce a 
simple, visible identifier; or introduce an ordinal number as part of the identifier. As noted by Artur 
Kasprzyk in a recent e-mail to me, a fourth option available in UML 2 is to tag the association ends of the 
repeatable fact type with {nonunique}, thereby making it a bag association.  

To understand how this works, let’s first consider the usual situation where a fact type can be 
populated only by a set of facts rather than a bag (multiset) of facts. In the ORM schema in Figure 2(a), the 
uniqueness constraint on the Employee visited Country fact type is depicted as a bar spanning both roles of the 
fact type. This constraint indicates that the association is many to many, and unique. So when we populate 
the association with sample facts, we allow the same employee to visit many countries, and the same 
country to be visited by many employees, but each (employee, country) pair in any given population 
appears only once in that population. This constraint is satisfied in the sample fact table shown. 
 Figure 2(b) depicts the same situation in a UML class diagram. The {P} notation for preferred 
identifier and the sample fact table are nonstandard extensions to UML. The “*” multiplicity means “0 or 
more”, so an employee may visit zero or more countries and a country may be visited by zero or more 
employees. By default, UML assumes that association ends are assigned the {unique} property but not the 
{ordered} property, ensuring that collection instances are sets (no repetition is allowed, and order is 
irrelevant). Also by default, role names are lower case versions of the relevant class name. So 
Employee.country returns a set of countries, and Country.employee returns a set of employees. 

Figure 2(c) depicts the same situation in the Barker ER notation. Since this notation does not support 
objectified associations, or allow associations to have attributes, Visit is modeled as an entity type, and no 
attempt is made to populate this with visit facts.  
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Figure 1 The Visit association populated by a set of facts in (a) ORM and (b) UML. 

 
 UML 2 allows association ends to be assigned the {nonunique} property. In this case, if the {ordered} 
property is not assigned, role instances now return a bag rather than a set. If {ordered} were also assigned, 
the collection would instead be a sequence (an ordered bag). For example, in Figure 2 both ends of the visit 
association are assigned the [nonunique} property, so an employee may be associated with a bag of 
countries, and a country may be associated with a bag of employees. The sample population is expanded 
with an extra (102, NL) row, to indicate that employee 102 visited The Netherlands twice. The population 
of the visit association is now a bag of (employee, country) pairs, not a set of (employee, country) pairs. 
 In this situation, UML is able to distinguish between multiple visits of the same employee to the same 
country because it identifies visits by internal, object identifiers. While this works, I personally don’t favor 
this approach because the visit identifiers are not part of human communication. Rather than hiding 
identifiers, I recommend addressing the problem of repeatable facts that give rise to bag situations by 
remodeling in terms of sets, using human-oriented visible identifiers, as discussed in the previous article. 
But I can appreciate that not everyone agrees with this recommendation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 The {nonunique} property may be used in UML 2 to supports bag associations. 
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Rigid Subtypes vs Role Subtypes 
 
All popular data modeling approaches provide at least basic support for subtyping, in which instances of 
one type (e.g. MalePerson) are necessarily instances of another more comprehensive type (e.g. Person). In 
such cases, the specialized type is said to be a subtype of the more general type. For a basic discussion of 
subtyping, see [10].  

Recent proposals from the ontology engineering community employ type metaproperties to ensure that 
subtyping schemes are well formed from an ontological perspective. Guarino and Welty [5] argue that 
every property in an ontology should be labeled as rigid, nonrigid, or antirigid. Rigid properties (e.g. being 
a person) necessarily apply to all their instances for their entire existence. Nonrigid properties (e.g. being 
hard) necessarily apply to some but not all their instances. Antirigid properties (e.g. being an employee) 
apply contingently to all their instances. One may then apply a metaconstraint (e.g. antirigid properties 
cannot subsume rigid properties) to impose restrictions on subtyping (e.g. Employee cannot be a supertype 
of Person). 

Later Guizzardi, Wagner, Guarino, and van Sinderen [6] proposed a UML profile that stereotyped 
classes into kinds, subkinds, phases, roles, categories, roleMixins, and mixins, together with a set of meta-
constraints, to help ensure that UML class models are ontologically well-formed. Guizzardi used this 
modeling profile in his doctoral thesis on ontological foundations for conceptual information models [7]. 

While the above research provides valuable contributions to ontology engineering, I have some 
reservations about its use in industrial information systems modeling, because I believe that the 7-
stereotype scheme may be overly burdensome to the majority of industrial data modelers. To be fair, I’ve 
also had pushback on the expressive detail of ORM, to which I’ve replied “Well, the world you are 
modeling is that complex—do you want to get it right or not?” Perhaps the same response could be made in 
defense of the 7-stereotypes. 

At any rate, a simpler alternative currently being considered for ORM 2 classifies each subtype as 
either a rigid subtype or role subtype. A type is rigid if and only if each instance of that type must belong to 
that type for its whole lifetime (in the business domain being modeled). Examples include Person, Cat, 
Animal, and Book. In contrast, any object that may at one time be an instance of a role type might not be an 
instance of that type at another time during its lifetime (in the business domain). Here I use “role” liberally 
to include a role played by an object (e.g. Manager, Student, Employee—assuming these are changeable in 
the business domain) as well as a phase or state of the object (e.g. Child, Adult, FaultyProduct—assuming 
changeability).  

Although this rigid/role classification scheme applies to any type, to reduce the classification burden 
for modelers this distinction is typically needed only for subtypes (in order to control subtype migration). 
As a simple example, Figure 3 shows how Dog and Cat might be depicted as rigid subtypes in ORM and 
UML. The circled “X” and “{disjoint}” constraints indicate that the subtypes are mutually exclusive (i.e. in 
each state of the business domain, no object instance is recorded as being simultaneously both a dog and a 
cat). The rigidity notation tentatively being considered for ORM is square bracketing of the subtype name 
(violet for alethic; blue with “o” for deontic, e.g. changing from male to female might be possible but 
forbidden). For UML I’ve chosen a rigid stereotype. Our next example identifies a case where the rigidity 
of a root type (here Animal) should also be declared. 

 
 
 
 
 
 
Figure 3. Rigid subtypes depicted in (a) ORM and (b) UML 

 
Rigidity is a dynamic constraint rather than a static constraint, since it restricts state changes (e.g. no 

dog may change into a cat, and no cat may change into a dog). Currently, ORM is being extended to cater 
for a variety of dynamic constraints using a formal textual language to supplement the ORM graphical 
language [2], and it is possible that rigidity might end up being captured textually in ORM rather than 
graphically as shown here. 
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In the above example, the subtypes are asserted. If instead they are derived, the relevant fact 
type/attribute used in their definition may be constrained by an appropriate changeability setting with 
impact on subtype rigidity. In Figure 4(a) the fact type Animal is of AnimalKind is made unchangeable (an 
animal can’t change its kind), as indicated by the square brackets (this notation is tentative). In Figure 4(b) 
the defining animal kind attribute is constrained to be readOnly (prior to UML 2, this was called “frozen”). 

In either case, the unchangeability of animal kind combined with the rigidity of Animal implies that 
the subtypes are rigid. If we were instead to assert the subtypes (rather than deriving them from a subtype 
definition) and derive animal kind from subtype membership, the changeability/rigidity settings would still 
need to be kept in sync.  

UML 2 [16] recognizes four changeability settings: unrestricted, readOnly, addOnly, and removeOnly. 
ORM 2 is currently being extended to enable declaration of fact type changeability (updateability and 
deleteability). Barker ER uses a diamond to indicate nontransferable relationships, but this may not be used 
for attributes. 

To avoid explicitly declaring role subtypes as such in ORM 2, subtypes may be assumed to be role 
subtypes by default (since rigidity is a constraint, this default is consistent with the ORM practice of not 
assuming a constraint unless it is explicitly declared). Unlike rigid subtypes, migration between role 
subtypes is often permitted. As a simple example, a person may play the role of child, teenager, and adult at 
different times in his/her lifetime (see Figure 5). The next article in this series discusses various ways to 
maintain history of objects as they migrate between role subtypes. 
 
 
 
 
 
 
 
 
Figure 4. Rigidity of subtypes is now derived (given that Animal is rigid) 

 
 
 
 
 
 
 
Figure 5. Migration between role subtypes is allowed 

 
Now consider Figure 6, which shows the well known data model pattern for party in ORM, UML, and 

Barker ER notations. Here Party is partitioned into Person and Organization. Ontologically, Person and 
Organization are substance sortals (they carry their own natural, intrinsic principle of identity). If “Party” 
simply means “Person or Organization” (a disjunction of sortals), then Party is a mixin type and there is no 
problem with this portrayal. 
 
 
 
 
 
 

Figure 6. The Party pattern 
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But what if “Party” has the sense of a role type (e.g. Customer)? If we replace “Party” by “Customer” 
in Figure 6, then Guizzardi [7, p. 281] would claim that the schema is not well-formed because a rigid 
universal (e.g. Person) cannot be a subtype of an antirigid one (e.g. Customer). For information modeling 
purposes however, if each person or organization in the business domain must be a customer, then it’s 
acceptable to specialize Customer into Person and Organization, even though ontologically this is incorrect 
(in the real world of which the business domain is just a part, not all persons are customers).  

The definition of rigid type given earlier is relative to the business domain. In the case just described, 
Customer is a rigid type in this sense, even though it is not rigid in the ontological sense. Information 
models of business domains can be well formed even though they are not proper ontologies. 

If however our business domain includes (now or possibly later) some people or organizations that are 
not customers, then we do need to remodel, since Customer is no longer rigid even in the sense used here. 
One of many possible solutions using Party as a mixin type is shown in Figure 7. This solution differs from 
that of Guizzardi [7, p. 282], where Person and Customer have no common supertype. My original 
formalization of ORM, which made top level entity types mutually exclusive by default, requires the 
introduction of a supertype such as Party. This can be pragmatically useful (e.g. by allowing a simple 
global identification scheme for all parties).  

However to avoid unnatural introduction of supertypes, Erik Proper and I long ago allowed the mutual 
exclusion assumption to be overridden by explicitly declaring an overlap possibility (depicted by 
overlapping “O”s) between top level types [14]. To reduce notational clutter, and as a relaxation for ORM 
2, I now allow overlap possibility between top level types to be implicitly deduced from the presence of a 
common subtype. With this understanding, the Party supertype could be removed from Figure 7. 

Such a relaxation, however, should be used with care. For example, a UML class diagram produced 
recently by a UML expert depicted the classes Cashier and Customer. When I asked the expert whether it 
was possible for a customer to be a cashier, he said “Maybe”. However nothing on the class diagram 
indicated this possibility, just as it did not reveal whether nonsense such as a customer being a cashier 
transaction (transactions were also modeled on the diagram) was possible. The class diagram was little 
more than a cartoon with informal semantics.  

It is sometimes useful in the modeling process to delay decisions about whether some service will be 
performed in an automated, semiautomated, or manual manner. For example, we can decide later whether 
cashiers will be ATMs and/or humans. Until we make that decision however, it is safer to allow for all 
possibilities (e.g. by explicitly declaring an overlap possibility between Cashier and Customer). Otherwise, 
we should explicitly indicate if our current model is to be interpreted informally. 

 
 
 
 
 
 
 
 
 
Figure 7. Remodeling is needed when Customer is a role type 

 
 
Conclusion 
 
This article began by discussing a fourth way to maintain history of nonfunctional, changeable fact types in 
UML using the {nonunique} property to declare bag associations. Various issues relating to the difference 
between rigid subtypes and role subtypes were then examined, mainly to lay the groundwork for the next 
article in this series. Unlike a rigid subtype, a role subtype allows objects over time to join or leave the 
subtype, thus allowing subtype migration. In many business domains, we need to retain historical details 
about objects as they move from one subtype to another. The next article considers a variety of data model 
patterns to allow such histories to be recorded. 
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