
Temporal Modeling: Part 3

Terry Halpin
Neumont University

This is the third in a series of articles on the impact of time on the conceptual modeling of business
domains. The first article [6] discussed the temporal data types instant (point in time), interval (duration of
time), and period (anchored duration of time), classified temporal object types into once-only (e.g., Date)
and repeatable (e.g., WeekDay) object types, and discussed four kinds of fact type: definitional (truth of
instances is a matter of definition), once-only (instances correspond to a single event), repeatable (instances
may correspond to multiple events) and time-deictic (the meaning of instances depends on the time of
utterance/inscription). It then showed how to model temporal details about point events or period events
underlying instances of once-only fact types that are unchangeable. The second article [7] examined the
modeling of temporal information about events underlying changeable fact types (their non-null fact
populations may change over time, by replacing, adding, or deleting facts) that are initially functional (n:1
or 1:1 associations).

The focus of this third article is on maintaining history of changeable fact types that are non-functional
(e.g. m:n binaries, or higher arity fact types). Three graphical notations are used for examples: second
generation Object-Role Modeling (ORM 2) [4, 5] as supported by the open source (Neumont ORM
Architect) NORMA tool [3, 8]; the Unified Modeling Language (UML) [9]; and the Barker notation [1] for
Entity-Relationship Modeling (ER) [2].

Maintaining History of Non-functional, Changeable Fact Types

Figure 1 shows a number of ways one might try to model visits of employees to countries, assuming that
we know the start date for each visit. Since some visits might still be in progress, an end date for a visit is
optional. Figure 1(a) models Visit as an objectified association in ORM, and Figure 1(b) takes a similar
approach in UML, modeling Visit as an association class. The “{P}” notation is a non-standard extension
to UML to indicate a primary identifier. As an alternative, Figure 1(c) models Visit as a co-referenced
entity type in ORM. The circled double-bar depicts a preferred, external uniqueness constraint, indicating
that any instance of Visit may be identified by combining the employee visitor with the country visited.
Figure 1(d) takes a similar approach in UML, modeling Visit as a Class with associations to Employee and
Country. Since UML has no graphical way to depict an external uniqueness constraint, this constraint is
captured in a note.

Figure 1(e) adopts a similar approach to the class diagram in Figure 1(d), but uses the Barker ER
notation. The strokes “|” on the association lines indicates that these associations with Employee and
Country provide the primary identifier for Visit. Unlike ORM and UML, Barker ER does not support
objectification, so it has no analog to the (a) and (b) models.
 These models are similar to ones discussed in an earlier article [6]. It should be obvious however, that
all of these models have a potential problem. You might like to identify this problem for yourself before
reading on.
 The main difference between the ORM model in Figure 1(a) and examples in earlier articles is that the
fact type Employee visited Country is non-functional (in this case m:n) and repeatable. For example, I have
visited Belgium several times. Suppose my employee number is 1001. The fact instance Employee ‘1001’
visited Country ‘BE’ may be repeated, with one occurrence for each of my visits to Belgium. But the uniqueness
constraint spanning the roles of the fact type Employee visited Country requires that such a fact instance appears
at most once in any population of the fact type. In other words the model in Figure 1(a) has no way to
record multiple visits to the same country by the same employee. The same is true of all the other variations
in Figure 1—they wrongly assume that a visit may be identified simply by combining the visitor with the
country visited. If we are not interested in recording repeated visits, then no change is needed. But suppose
we do want to record a full history of visits. How do we do this? Try answering this yourself before reading
on.

1

Visit

Employee
(.nr)

Country
(.code)

(a)

empNr {P}
...

Employee

(b)

code {P}
...

Country

* *

Date
(ymd)

visited

“Visit”

started
on

ended
on

startDate [1]
endDate [0..1]

Visit

(c)

empNr {P}
...

Employee
(d)

code {P}
...

Country
*

*

Date
(ymd)

started
on

ended
on

startDate [1]
endDate [0..1]

Visit

Employee
(.nr)

was by

was to
Country
(.code)

1

1

(employee, country)
is unique

VISIT

* start date
o end date

...

by

to

the performer of

the place of

EMPLOYEE
* emp nr
...

COUNTRY
* country code
...

(e)

Figure 1. Some attempts to model visits in (a) ORM, (b) UML, (c) ORM, (d) UML, and (e) Barker ER.

 There are at least three ways to resolve this problem. The first approach is to include a distinguishing
temporal role as part of the identifier. For example, assuming that each employee starts to visit at most one
country on any given date, we may identify a visit by combining the visitor, the country visited, and the
start date of the visit. The ORM solutions are now remodeled as shown in Figure 2. The additional external
uniqueness constraint (circled bar) indicates that where a visit end date exists, each combination of visitor,
country visited, and end date applies to at most one visit.

… entered … on ...

“Visit !”

Employee
(.nr)

Country
(.code)

Date
(ymd)

ended on

(a) (b)

Visit !

is by

is to

began on

Date
(mdy)

ended on

Employee
(.nr)

Country
(.code)

Figure 2. ORM models including start date as part of the identifier for Visit.

The UML and Barker ER versions of the co-referenced approach in Figure 2(b) are shown in Figure 3.

UML has no graphic for either external uniqueness constraint so these are captured informally in a note.
They could be specified formally in UML’s Object Constraint Language (OCL) [10] but the formulae are
likely to be unintelligible to non-technical domain experts. The Barker ER version uses an octothorpe “#”
to include start-date in the primary identifier, but has no way to specify the external uniqueness constraint
involving end-date.

2

 (a) (b)

VISIT

* start date
o end date

...

by

to

the performer of

the place of

EMPLOYEE
* emp nr
...

COUNTRY
* country code
...

empNr {P}
...

Employee

code {P}
...

Country
*

*

startDate [1]
endDate [0..1]

Visit 1

1

(employee, country, startdate)
is unique.
(employee, country, enddate)
is unique where enddate exists.

Figure 3. UML and Barker ER models including start date as part of the identifier for Visit.

If an employee may start to visit more than one country on the same date, we need to refine the

temporal granularity (e.g. to hour or minute, instead of date) to provide an appropriate visit identifier. The
models in Figure 4 choose a granularity of minute. For the rest of the discussion we return to Date,
assuming a temporal granularity of one day is sufficient.

… entered … on ...

“Visit !”

Employee
(.nr)

Country
(.code)

Instant
(dhm)

ended on

(a) (b)

Visit !

is by

is to

began on

Instant
(dhm)

ended on

Employee
(.nr)

Country
(.code)

Figure 4. Refining the temporal granularity to minute.

 A second approach is to introduce a simple, visible identifier for Visit, as shown in Figure 5. Of
course, both of the former external uniqueness constraints still apply, but neither provides the preferred
identifier (see the ORM model in Figure 5(a)).

 (a)

Visit
(.id)

is by

is to

began on

Date
(mdy)

ended on

Employee
(.nr)

Country
(.code)

(b)

empNr {P}
...

Employee

code {P}
...

Country
*

*

visitId {P}
startDate [1]
endDate [0..1]

Visit 1

1

(employee, country, startdate)
is unique.
(employee, country, enddate)
is unique where enddate exists.

(c)

VISIT

* visit id
* start date
o end date

...

by

to

the performer of

the place of

EMPLOYEE
* emp nr
...

COUNTRY
* country code
...

Figure 5. Introducing a simple, visible identifier in (a) ORM, (b) UML and (c) Barker ER.

3

 In UML, hidden surrogate identifiers are assumed for all objects in all classes. However, we use
visitId here as a visible identifier that is used by humans in the business domain to communicate about
visits. This requires the addition of a visitId attribute to the UML solution as shown in Figure 5(b). Again,
the non-standard “{P}” notation is used to indicate the primary identifier.

In the Barker ER solution (Figure 5(c)), a visit-id attribute is added, with “#” marking it as the primary
identifier, and the stroke is removed from the association lines. Unfortunately, Barker ER has no notation
for alternate identifiers, so now both external uniqueness constraints are lost.
 A third approach is to introduce an ordinal number as part of the identifier. Here the number is used
to count the number of times the same employee visited the same country. For example, my first visit to
Belgium is distinguished from my second visit to Belgium simply by including “first” and “second” in the
definite descriptions. This visit number is included in the models in Figure 6. For example, the first and
second visits of employee 1001 to Belgium and Norway map to the tuples (‘1001’, ‘BE’, 1), (‘1001’, ‘BE’,
2), (‘1001’, ‘NO’, 1), and (‘1001’, ‘NO’, 2) respectively.

 (a)

Visit

is by

is to

began on

Date
(mdy)

ended on

Employee
(.nr)

Country
(.code)

(b)

empNr {P}
...

Employee

code {P}
...

Country
*

*

visitNr [1]
startDate [1]
endDate [0..1]

Visit 1

1

(employee, country, visitNr)
is unique.
(employee, country, startdate)
is unique.
(employee, country, enddate)
is unique where enddate exists.

(c)

VISIT

* visit nr
* start date
o end date

...

by

to

the performer of

the place of

EMPLOYEE
* emp nr
...

COUNTRY
* country code
...

VisitNr

has

{1..}

Figure 6. Adding ordinal numbers to help identify visits in (a) ORM, (b) UML, and (c) Barker ER.

Conclusion

This article discussed three ways to maintain a basic history of non-functional, changeable fact types for the
common case of a repeatable, many:many fact type: include a distinguishing temporal role as part of the
identifier; introduce a simple, visible identifier; introduce an ordinal number as part of the identifier. While
this covers the most common data model pattern in this category, in practice other complexities can arise
that require further analysis. We examine some of these tricky cases in the next article.

References

1. Barker, R. 1990, CASE*Method: Tasks and Deliverables, Addison-Wesley, Wokingham, England.
2. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM Transactions

on Database Systems, 1(1), pp. 9−36.
3. Curland, M. & Halpin, T. 2007, ‘Model Driven Development with NORMA’, Proc. 40th Int. Conf. on

System Sciences (HICSS-40), 10 pages, CD-ROM, IEEE Computer Society, January 2007.
4. Halpin, T. 2001, Information Modeling and Relational Databases, Morgan Kaufmann, San Francisco.
5. Halpin, T. 2005, ‘ORM 2’, On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops,

eds. R. Meersman, Z. Tari, P. Herrero et al., Cyprus. Springer LNCS 3762, pp 676-87.

4

5

6. Halpin T. 2007, ‘Temporal Modeling (Part 1)’, Business Rules Journal, Vol. 8, No. 2 (Feb. 2007),
URL: http://www.BRCommunity.com/a2007/b332.html.

7. Halpin, T. 2007, ‘Temporal Modeling (Part 2)’, Business Rules Journal, Vol. 8, No. 6 (June 2007),
URL: http://www.BRCommunity.com/a2007/b351.html.

8. NORMA website: http://sourceforge.net/projects/orm.
9. Object Management Group 2003, UML 2.0 Infrastructure, URL: http://www.omg.org/uml.
10. Warmer, J. & Kleppe, A. 2003, The Object Constraint Language, 2nd Edition, Addison-Wesley.

http://www.brcommunity.com/a2007/b351.html

