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This paper provides an overview of Object-Role Modeling (ORM), a fact-oriented method for 
performing information analysis at the conceptual level. The version of ORM discussed here is 
supported in Microsoft Visio for Enterprise Architects, part of Visual Studio .NET Enterprise Architect.  

 
 
Introduction 
 
It is well recognized that the quality of a database application depends critically on its design. To help 
ensure correctness, clarity, adaptability and productivity, information systems are best specified first at the 
conceptual level, using concepts and language that people can readily understand. The conceptual design 
may include data, process and behavioral perspectives, and the actual DBMS used to implement the design 
might be based on one of many logical data models (relational, hierarchic, network, object-oriented etc.). 
This overview focuses on the data perspective, and assumes the design is to be implemented in a relational 
database system. 

Designing a database involves building a formal model of the application area or universe of discourse 
(UoD). To do this properly requires a good understanding of the UoD and a means of specifying this 
understanding in a clear, unambiguous way. Object-Role Modeling (ORM) simplifies the design process by 
using natural language, as well as intuitive diagrams which can be populated with examples, and by 
examining the information in terms of simple or elementary facts. By expressing the model in terms of 
natural concepts, like objects and roles, it provides a conceptual approach to modeling.  
 Early versions of object-role modeling were developed in Europe in the mid-1970s (e.g. binary 
relationship modeling and NIAM). The version discussed here is based on the author's formalization of the 
method, and incorporates extensions and refinements arising from research conducted in Australia and the 
USA. The associated language FORML (Formal Object-Role Modeling Language) is supported in 
Microsoft Visio for Enterprise Architects (VEA), part of Visual Studio .NET Enterprise Architect. 
 Another conceptual approach is provided by Entity-Relationship (ER) modeling. Although ER models 
can be of use once the design process is finished, they are less suitable for formulating, transforming or 
evolving a design. ER diagrams are further removed from natural language, cannot be populated with fact 
instances, require complex design choices about attributes, lack the expressibility and simplicity of a role-
based notation for constraints, hide information about the semantic domains which glue the model together, 
and lack adequate support for formal transformations. Many different ER notations exist that differ in the 
concepts they can express and the symbols used to express these concepts. For such reasons we prefer 
ORM for conceptual modeling. In addition to ORM, VEA supports IDEF1X (a hybrid of ER and relational 
modeling) as a view of ORM.  
 Although the detailed picture provided by ORM diagrams is often desirable, for summary purposes it 
is useful to hide or compress the display of much of this detail. Though not discussed here, various 
abstraction mechanisms exist for doing this. If desired, ER diagrams can also be used for providing 
compact summaries, and are best developed as views of ORM diagrams.  
 This overview conveys the main ideas in ORM by discussing a case study. First we explain the steps 
used to develop a conceptual design. To help communicate the ideas, we deliberately make some mistakes, 
and later show how the design method helps to correct these errors. We also include a simple example to 
show how the conceptual design may be “optimized” for relational systems by applying a transformation.  
 An algorithm for mapping this design to a normalized, relational database schema is then outlined. 
With VEA, the conceptual design can be entered in either graphical or textual form, and automatically 
mapped to a relational schema for use in a variety of relational DBMSs. Finally, a brief sketch is given of 
how ORM may be used as a sound basis for conceptual queries. For a detailed discussion of ORM, see [1]. 
For a tutorial on how to use the VEA tool to create ORM models and map them to relational models, see [5, 
6, 7]. For further resources on ORM, see www.orm.net. 
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The Conceptual Schema Design Procedure  
 
The information systems life cycle typically involves several stages: feasibility study; requirements 
analysis; conceptual design of data and operations; logical design; external design; prototyping; internal 
design and implementation; testing and validation; and maintenance. ORM's conceptual schema design 
procedure (CSDP) focuses on the analysis and design of data. The conceptual schema specifies the 
information structure of the application: the types of fact that are of interest; constraints on these; and 
perhaps derivation rules for deriving some facts from others.  
 With large-scale applications, the UoD is divided into convenient modules, the CSDP is applied to 
each, and the resulting subschemas are integrated into the global conceptual schema. The CSDP itself has 
seven steps (see Table 1). The rest of this section illustrates the basic working of this design procedure by 
means of a simple example.  
 

Table 1 The conceptual schema design procedure (CSDP) 

Step Description 

1 Transform familiar information examples into elementary facts, and apply quality checks 

2 Draw the fact types, and apply a population check 

3 Check for entity types that should be combined, and note any arithmetic derivations 

4 Add uniqueness constraints, and check arity of fact types 

5 Add mandatory role constraints, and check for logical derivations 

6 Add value, set comparison and subtyping constraints 

7 Add other constraints and perform final checks 
 
  Step 1 is the most important stage of the CSDP. Examples of the kinds of information required from 
the system are verbalized in natural language. Such examples are often available in the form of output 
reports or input forms, perhaps from a current manual version of the required system. If not, the modeler 
can work with the client to produce examples of output reports expected from the system. To avoid 
misinterpretation, it is usually necessary to have a UoD expert (a person familiar with the application) 
perform or at least check the verbalization. As an aid to this process, the speaker imagines he/she has to 
convey the information contained in the examples to a friend over the telephone. 
  For our case study, we consider a fragment of an information system used by a university to 
maintain details about its academic staff and academic departments. One function of the system is to print 
an academic staff directory, as exemplified by the report extract shown in Table 2. Part of the modeling 
task is to clarify the meaning of terms used in such reports. The descriptive narrative provided here would 
thus normally be derived from a discussion with the UoD expert. The terms “empNr” and “extNr” abbrevi-
ate “employee number” and “extension number”.  
   

Table 2 Extract from a directory of academic staff 
Emp 
Nr 

Emp Name Dept Room Phone 
Ext. 

Phone
Access 

Tenure/ 
Contract-expiry 

715 
720 
139 
430 
503 
651 
770 
112 
223 
951 
333 
654 
... 

Adams A 
Brown T 
Cantor G 
Codd EF 
Hagar TA 
Jones E 
Jones E 
Locke J 
Mifune K 
Murphy B 
Russell B 
Wirth N 
... 

Computer Science 
Biochemistry 
Mathematics 
Computer Science 
Computer Science 
Biochemistry 
Mathematics 
Philosophy 
Elec. Engineering 
Elec. Engineering 
Philosophy 
Computer Science 
... 

69-301 
62-406 
67-301 
69-507 
69-507 
69-803 
67-404 
1-205 

50-215A 
45-B19 
1-206 
69-603 

... 

2345 
9642 
1221 
2911 
2988 
5003 
1946 
6600 
1111 
2301 
6600 
4321 

... 

LOC 
LOC 
INT 
INT 
LOC 
LOC 
LOC 
INT 
LOC 
LOC 
INT 
INT 
... 

01/31/95 
01/31/95 
tenured 
tenured 
tenured 

12/31/96 
12/31/95 
tenured 
tenured 

01/03/95 
tenured 
tenured 

... 
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 A phone extension may have access to local calls only (“LOC”), national calls (“NAT”), or 
international calls (“INT”). International access includes national access, which includes local access. In 
the few cases where different rooms or staff have the same extension, the access level is the same. An 
academic is either tenured or on contract. Tenure guarantees employment until retirement, while contracts 
have an expiry date. 
 The information contained in Table 2 is to be stated in terms of elementary facts. Basically, an 
elementary fact asserts that a particular object has a property, or that one or more objects participate in a 
relationship, where that relationship cannot be expressed as a conjunction of simpler (or shorter) facts. For 
example, to say that Bill Clinton jogs and is the president of the USA is to assert two elementary facts. See 
if you can read off the elementary facts expressed on the first row of Table 2 before reading on.  
 As a first attempt, one might read off the information on the first row as the six facts f1-f6. Each 
asserts a binary relationship between two objects. For discussion purposes the relationship type, or logical 
predicate, is shown in bold between the noun phrases that identify the objects. Object types are displayed 
here in italics. For compactness, some obvious abbreviations have been used (“empNr”, “EmpName”, 
“Dept”, “extNr”); when read aloud these can be expanded to “employee number”, “Employee name”, 
“Department” and “extension number”. 
 
f1 The Academic with empNr 715 has EmpName ‘Adams A’. 
f2 The Academic with empNr 715 works for the Dept named ‘Computer Science’. 
f3 The Academic with empNr 715 occupies the Room with roomNr ‘69-301'. 
f4 The Academic with empNr 715 uses the Extension with extNr ‘2345’. 
f5 The Extension with extNr ‘2345’ provides the AccessLevel with code ‘LOC’. 
f6 The Academic with empNr 715 is contracted till the Date with mdy-code ‘01/31/95’. 
 
 Row two contains different instances of these six fact types. Row three, because of its final column, 
provides an instance of a seventh fact type: 
 
f7 The Academic with empNr 139 is tenured. 
 

This is called a unary fact—it specifies one property of an object. A logical predicate may be regarded 
as a sentence with one or more “object-holes” in it—each hole is filled in by a term or noun phrase that 
identifies an object. The number of object-holes is called the arity of the predicate. Each of these holes 
determines a different role that is played in the predicate. For example, in f4 the academic plays the role of 
using, and the extension plays the role of being used. In f7 the academic plays the role of being tenured. On 
a diagram, each role is depicted as a separate box (see later). 
 Object-Role Modeling is so-called because it views the world in terms of objects playing roles. Facts 
are assertions that objects play roles. An n-ary fact has n roles. It is not necessary that the roles be played 
by different objects. For example, consider the binary fact type: Person voted for Person. This has two roles 
(voting, and being voted for), but both could be played by the same object (e.g. Bill Clinton voted for Bill 
Clinton). 
 In FORML a predicate may have any arity (1, 2, 3 ..), but since the predicate is elementary, arities 
above 3 or 4 are rare. In typical applications, most predicates are binary. For these, we allow the inverse 
predicate to be stated as well, so that the fact can be read in both directions. For example, the inverse of f4 
is: 
 
f4' The Extension with extNr ‘2345’ is used by the Academic with empNr 715. 
  
To save writing, both the normal predicate and its inverse are included in the same declaration, with the 
inverse predicate preceded by a slash “/”. For example: 
 
f4" The Academic with empNr 715 uses /is used by the Extension with extNr ‘2345’. 
 
 Typically, predicate names are unique in the conceptual schema. In special cases however (e.g. “has”), 
the same name may be used externally for different predicates: internally these are assigned different 
identifiers. 
 As a quality check at Step 1, we ensure that objects are well identified. Basic objects are either values 
or entities. Values are character strings or numbers: they are identified by constants (e.g. ‘Adams A’, 715). 
Entities are “real world” objects that are identified by a definite description (e.g. the Academic with empNr 
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715). In simple cases, such a description indicates the entity type (e.g. Academic), a value (e.g. 715) and a 
reference mode (e.g. empNr). A reference mode is the manner in which the value refers to the entity. 
Entities may be tangible objects (e.g. persons, rooms) or abstract objects (e.g. access levels). Composite 
reference schemes are possible (see later). 
 Fact f1 involves a relationship between an entity (a person) and a value (a name is just a character 
string). Facts f2-f6 specify relationships between entities. Fact f7 states a property (or unary relationship) of 
an entity. In setting out facts f1-f7, the employeeNr is unquoted while both extNr and roomNr are quoted. 
This indicates the designer treated employeeNr as a number, but considered extNr and roomNr as character 
strings. However unless arithmetic operations are required for empNr it could have been quoted. Unless 
extNr and roomNr must permit non-digits (e.g. hyphens or letters), or string operations are needed for 
them, they could have been unquoted.  
 As a second quality check at Step 1, we use our familiarity with the UoD to see if some facts should be 
split or recombined (a formal check on this is applied later). For example, suppose facts f1 and f2 were 
verbalized as the single fact f8. 
 
f8 The Academic with empNr 715 and empname ‘Adams A' works for the Dept named ‘Computer 

Science’. 
 
The presence of the word “and” suggests that f8 may be split without information loss. The repetition of 
“Jones E” on different rows of Table 2 shows that academics cannot be identified just by their name. 
However the uniqueness of empNr in the sample population suggests that this suffices for reference. Since 
the “and-test” is only a heuristic, and sometimes a composite naming scheme is required for identification, 
the UoD expert is consulted to verify that empNr by itself is sufficient for identification. With this 
assurance obtained, f8 is now split into f1 and f2. 
 As an alternative to specifying complete facts one at a time, the reference schemes may be declared up 
front and then assumed in later facts. Simple reference schemes are declared by enclosing the reference 
mode in parenthesis. For example, the entity types and their identification schemes may be declared thus: 
 
 Reference schemes:  
    Academic (empNr);    
    Dept (name); 
    Room (roomNr);    
    Extension (extNr); 
    AccessLevel (code);    
    Date (mdy) 
 
Then facts f1-f7 may be stated more briefly as follows. Here the names of object types begin with a capital 
letter. 
 
f1 Academic 715 has EmpName ‘Adams A’. 
f2 Academic 715 works for Dept ‘Computer Science’. 
f3 Academic 715 occupies Room ‘69-301’. 
f4 Academic 715 uses Extension ‘2345’.  
f5 Extension ‘2345' provides AccessLevel ‘LOC’.  
f6 Academic 715 is contracted till Date ‘01/31/95’. 
f7 Academic 139 is tenured. 
 
These facts are instances of the following fact types: 
 
F1  Academic has EmpName 
F2 Academic works for Dept 
F3 Academic occupies Room 
F4 Academic uses Extension 
F5 Extension provides AccessLevel 
F6 Academic is contracted till Date 
F7 Academic is tenured 
 
 Step 2 of the CSDP is to draw a draft diagram of the fact types and apply a population check (see 
Figure 1). Entity types are depicted as named ellipses. Predicates are shown as named sequences of one or 
more role boxes. Predicate names are read left-to-right and top-to-bottom, unless prepended by “<<” (which 
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reverses the reading direction). An n-ary predicate has n role boxes. The inverse predicate names have been 
omitted in this figure. Value types are displayed as named, broken ellipses. Lines connect object types to 
the roles they play. Reference modes are written in parenthesis: this is an abbreviation for the explicit 
portrayal of reference types. For example, the notation “Academic (empNr)” indicates an injection (1:1-into 
mapping) from the entity type Academic to the value type EmpNr. 
  In this example there are seven fact types. As a check, each has been populated with at least one 
fact, shown as a row of entries in the associated fact table, using the data from rows 1 and 3 of Table 2. The 
English sentences listed before as facts f1-f7, as well as other facts from row 3, may be read directly off 
this figure. Though useful for validating the model with the client and for understanding constraints, the 
sample population is not part of the conceptual schema diagram itself.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Draft diagram of fact types for Table 2 with sample population 
 
 To help illustrate other aspects of the CSDP we now widen our example. Suppose the information 
system is also required to assist in the production of departmental handbooks. Perhaps the task of schema 
design has been divided up, and another modeler works on the subschema relevant to department 
handbooks. Figure 2 shows an extract from a page of one such handbook.  
 
 

 
Department: Computer Science 

Home phone of Dept head:  9765432  
 
Chairs  Professors (5) 
 
Databases         Codd EF BSc (UQ); PhD (UCLA)  (Head of Dept) 
Algorithms         Wirth N BSc (UQ); MSc (ANU); DSc (MIT) 
 … 
 
Senior Lecturers (9) 
 
Hagar TA  BInfTech (UQ); PhD (UQ) 
 … 
 
Lecturers (8) 
 
Adams A  MSc (OXON) 
 … 
 

 

Figure 2 Extract from Handbook of Computer Science Department 

Extension
(extNr)

Academic
(empNr)

Dept
(name)

AccessLevel
(code)

Date
(mdy)

Room
(roomNr)

EmpName

is used by / uses

2345   LOC
1221   INT

715    Adams A
139    Cantor G

is contracted till

2345   715
1221   139 715    Computer Science

139    Mathematics

715    01/31/97

139

69-301   715
67-301   139

provides

works for

<< occupies

has

is tenured
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In this university academic staff are classified as professors, senior lecturers or lecturers, and each 
professor holds a “chair” in a research area. To reduce the size of our problem, we have excluded many 
details that in practice would also be recorded (e.g. office phone and faxNr). To save space, details are 
shown here for only four of the 22 academics in that department. The data are of course, fictitious. 
 In verbalizing a report, at least one instance of each fact type should be stated. Let us suppose that the 
designer for this part of the application suggests the following fact set, after first declaring the following 
reference schemes: Dept (name); Professor (name); SeniorLecturer (name); Lecturer (name); Quantity 
(nr)+; Chair (name); Degree (code); University (code); HomePhone (phoneNr). The “+” in “Quantity 
(nr)+” indicates that Quantity is referenced by a number, not a character string, and hence can be operated 
on by numeric operators such as “+”. For discussion purposes, the predicates are shown here in bold. 
 
f9 Dept ‘Computer Science' has professors in Quantity 5.  
f10 Professor ‘Codd EF' holds Chair ‘Databases'.  
f11 Professor ‘Codd EF' obtained Degree ‘BSc' from University ‘UQ'. 
f12 Professor ‘Codd EF' heads Dept ‘Computer Science'. 
f13 Professor ‘Codd EF' has HomePhone ‘965432'. 
f14 Dept ‘Computer Science' has senior lecturers in Quantity 9. 
f15 SeniorLecturer ‘Hagar TA' obtained Degree ‘BInfTech' from University ‘UQ'. 
f16 Department ‘Computer Science' has lecturers in Quantity 8.  
f17 Lecturer ‘Adams A' obtained Degree ‘MSc' from University ‘OXON'. 
 
 As a quality check for Step 1 we again consider whether entities are well identified. It appears from 
the handbook example that within a single department, academics may be identified by their name. Let us 
assume this is verified by the domain expert. However the complete application requires us to handle all 
departments in the same information system, and to integrate this subschema with the directory subschema 
considered earlier.  
 Hence we must replace the academic naming convention used for the handbook example by the global 
scheme used earlier (i.e. empNr). Suppose that we can't see anything else wrong with facts f9-17, and 
proceed to expand the draft schema diagram to include this new information (this is left as an exercise for 
the reader).  
 This leads us to Step 3 of the CSDP: check for entity types that should be combined, and note any 
arithmetic derivations. The first part of this step prompts us to look carefully at the fact types for f11, f15 
and f17. Currently these are handled as three ternary fact types: Professor obtained Degree from University; 
SeniorLecturer obtained Degree from University; Lecturer obtained Degree from University.  
 The common predicate suggests that the entity types Professor, SeniorLecturer and Lecturer should be 
collapsed to the single entity type Academic, with this predicate now shown only once, as shown in Figure 
3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Extra fact types needed to capture the additional information in Figure 2 

Rank
(code)

Academic
(empNr)

Chair
(name) Dept

(name)

Degree
(code)

University
(code)

... obtained ... from ...

* Dept employs academics of Rank in Quantity iff Quantity =
       count each Academic who has Rank and works for Dept

works for

<< has

heads

<< holds

PhoneNr
<< has home-
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To preserve the original information about who is a professor, senior lecturer or lecturer we introduce 
the fact type: Academic has Rank. Let's use the codes “P”, “SL” and “L” for the ranks of professor, senior 
lecturer and lecturer. For example, instead of fact f10 we now have: 
 
f18 Academic 430 has EmpName ‘Codd EF’. 
f19 Academic 430 has Rank ‘P’ 
f20 Academic 430 holds Chair ‘Databases’. 
 
 Facts of the kind expressed in f9, f14 and f16 can now all be expressed in terms of the ternary fact type: 
Dept employs academics of Rank in Quantity. For example, f9 can be replaced by:  
 
f9' Dept ‘Computer Science’ employs academics of Rank ‘P’ in Quantity 5. 
 
 However, this does not tell us which professors work for the Computer Science department. Indeed, 
given that many departments exist, the verbalization in f9-f17 failed to capture the information about who 
worked for that department. This information is implicit in the listing of the academics in the Computer 
Science handbook. To capture this information in our application model, we introduce the following fact 
type: Academic works for Dept. For example, one fact of this kind is: 
 
f21 Academic 430 works for Dept ‘Computer Science’ 
 
 The second aspect of Step 3 is to see if some fact types can be derived from others by arithmetic. 
Since we now record the rank of academics as well as their departments, we can compute the number in 
each rank in each department simply by counting. So facts like f9' are derivable. If desired, derived fact 
types may be included on a schema diagram if they are marked with an asterisk “*” to indicate their 
derivability. To simplify the picture, it is usually better to omit derived predicates from the diagram. 
However in all cases a derivation rule must be supplied. This may be written below the diagram (see Figure 
3). Here “iff” abbreviates “if and only if”. 
 Step 4 of the CSDP is to add uniqueness constraints and check the arity of the fact types. Uniqueness 
constraints are used to assert that entries in one or more roles occur there at most once. A bar across n roles 
of a fact type (n > 0) indicates that each corresponding n-tuple in the associated fact table is unique (no 
duplicates are allowed for that column combination). Arrow tips at the ends of the bar are needed if the 
roles are non-contiguous (otherwise arrow tips are optional). A uniqueness constraint spanning roles of 
different predicates is indicated by a circled “u”: this specifies that in the natural join of the predicates, the 
combination of connected roles is unique. 
 For example, a fragment of the conceptual schema under consideration is displayed in Figure 4. While 
these constraints are suggested by the original population, the domain expert should normally be consulted 
to verify them. It is sometimes helpful to construct a test population for each fact type in this regard, though 
simple questions are usually more efficient. The internal uniqueness constraints on the binary fact types 
assert that each academic has at most one rank, holds at most one chair (and vice versa), works for at most 
one department, and has at most one employee name. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Some of the fact types, with uniqueness constraints added 

Rank
(code)

Academic
(empNr)

Chair
(name)

Dept
(name)

Degree
(code)

University
(code)

... obtained ... from ...

EmpName

works for

is held by / holds

<< has

u

has
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 The external uniqueness constraint stipulates that each (department, empname) combination applies to 
at most one academic. That is, within the same department, academics have distinct names. The constraint 
on the ternary says that for each (academic, degree) pair, the award was obtained at only one university. 
 Once uniqueness constraints have been added, an arity check is performed. A sufficient but not 
necessary condition for splittability of an n-ary fact type is that it has a uniqueness constraint that misses 
two roles. For example, suppose we tried to use the ternary in Figure 5(a). Since each academic has only 
one rank and works for only one department, the uniqueness constraint spans just the first role. This misses 
two roles of the ternary; so the fact type must be split on the source of the uniqueness constraint into the 
two binaries Academic has Rank and Academic works for Dept as shown in Figure 5(b). 
 
 
 
 
 
 
 
 

Figure 5 This fact type splits since 2 roles are missed by the uniqueness constraint 
 
 If a fact type is elementary all its functional dependencies (FDs) are implied by uniqueness constraints. 
For example, each academic has only one rank (hence in the fact table for Academic has Rank, entries in 
the rank column are a function of entries in the academic column). If in doubt, one checks for FDs not so 
implied; if such an FD is found, the fact type is split on the source of the FD. 
 Step 5 of the CSDP is to add mandatory role constraints, and check for logical derivations. A role is 
mandatory (or total) for an object type if and only if every object of that type which is referenced in the 
database must be known to play that role. This is explicitly shown by means of a mandatory role dot where 
the role connects with its object type. If two or more roles are connected to a circled mandatory role dot, 
this means the disjunction of the roles is mandatory (i.e. each object in the population of the object type 
must play at least one of these roles)—an inclusive-or constraint.  
  
 
 
 
 
 
 
 
 
 

Figure 6 Some of the fact types, with mandatory role constraints added 
 

For example, Figure 6 adds mandatory role constraints to some of the fact types already discussed. 
These dots indicate that each academic has a rank and works for a department; moreover each academic 
either is tenured or is contracted till some date. Roles that are not mandatory are optional. The role of 
having a chair is optional. The roles of being contracted or being tenured are optional too, but their 
disjunction is mandatory. If an object type plays only one fact role in the global schema, then by default 
this is mandatory, but a dot is not shown (e.g. the role played by Rank is mandatory by implication). 
 Now that uniqueness and mandatory role constraints have been discussed, reference schemes can be 
better understood. Simple reference schemes involve a mandatory 1:1 mapping from entity type to value 
type. For example, the notation “Rank (code)” abbreviates the binary reference type: Rank has Rankcode. If 
shown explicitly, both roles of this binary have a simple uniqueness constraint, and the reference role 
played by Rank has a mandatory role dot. 
 With composite reference, a combination of two or more values can be used to refer to an entity. For 
example, while EmpNr provides a simple primary identifier for Academic, the combination of Dept and 
EmpName provides a secondary identification scheme. Sometimes composite schemes are used for primary 

Academic

Rank

Dept
... of ... works for ...

Academic

Rank

Dept
works for

has
(a) (b)

Rank
(code)

Academic
(empNr)

Chair
(name)

Dept
(name)

Date
(mdy)

is contracted till

works for

is held by / holds

<< has

is tenured
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reference. For example, suppose that to help students find their way to lectures, departmental handbooks 
include a building directory, which lists the names as well as the numbers of buildings. A sample extract of 
such a directory is shown in Table 3. 
 

Table 3 Extract from a directory of buildings 

BuildingNr Building name 
… 
67 
68 
69 
… 

… 
Priestly 
Chemistry 
Computer Science 
… 

 
  Earlier we identified rooms by a single value. For example “69-301” was used to denote the room in 
building 69 which has room number “301”. Now that buildings are to be talked about in their own right, we 
should replace the simple reference scheme by a composite one that shows the full semantics (see Figure 
7). Here RoomNr now means just the number (e.g. “301”) used to identify the room within its building. 
This is used in conjunction with the buildingNr to identify the room within the whole university. To 
explicitly indicate that the external uniqueness constraint provides the primary reference for Room, the 
circled “u” may be replaced by a circled “P” (not shown here). 
 
 
 
 
 
 
 
 
 

Figure 7 Room has a composite, primary reference scheme 

 
 Knowledge of uniqueness constraints and mandatory roles can assist in deciding when to nest a fact 
type. The ternary in Figure 4 could have been modeled by nesting as follows. First declare the binary: 
Academic obtained Degree. Now objectify this relationship as “DegreeAcquisition” (graphically this is depicted 
as a soft rectangle enveloping the predicate being objectified). Now attach another binary predicate to this 
to connect it to University. This yields the nested version: DegreeAcquisition(Academic obtained Degree) was from 
University.  
 In this case, the objectified predicate plays only one role, and this role is mandatory. Whenever this 
happens we prefer the flattened version instead of the nested version, since it is more compact and natural, 
and it simplifies constraint expression. In all other cases, the nested version is to be preferred (i.e. choose 
nesting if the objectified predicate plays an optional role, or plays more than one role).  
 As an example, suppose the application also has to deal with reports about teaching commitments, an 
extract of which is shown in Table 4. Not all academics currently teach. If they do, their teaching in one or 
more subjects may be evaluated and given a rating. Some teachers serve on course curriculum committees. 
 

Table 4 Extract of report on teaching commitments 

EmpNr Emp. name Subject Rating Committees 

715 Adams A CS100 
CS101 

5 
 

 
 

430 Codd EF    

654 Wirth N CS300  BSc-Hons 
CAL Advisory 

  

Room

Building
(bldgNr) BldgName

RoomNr

is in / includes

has / is of

u
has / is of
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 Here the new fact types may be schematized as shown in Figure 8. By default, an objectified predicate 
is fully spanned by a uniqueness constraint, to ensure elementarity (this is implicit in the frame notation, 
but may be shown explicitly as in the figure). Since not all (Academic, Subject) pairs involved in Teaching 
have a rating, nesting is preferred. To flatten this we would need a binary for teaching subjects, and a 
ternary for rating the teaching of subjects, with a pair subset constraint (see later) between them.  
  The nested object type Teaching plays only one role, and this role is optional. So instances of 
Teaching can exist independently without having to play a fact role. This makes teaching an independent 
object type. In VEA, the independent status of an object type is set by checking the “Independent” option in 
the object type’s properties sheet: this automatically appends “ !” to the graphic display of the object type’s 
name.  
 
 
 
 
 
 
 
 
 
 

Figure 8 Example of nesting 

 
 The second stage of Step 5 is to check for logical derivations (i.e. can some fact type be derived from 
others without the use of arithmetic?). One strategy here is to ask whether there are any relationships 
(especially functional relationships) which are of interest but which have been omitted so far.  
 Another strategy is to look for transitive patterns of functional dependencies. For example, if an 
academic has only one phone extension and an extension is in only one room, we could use these to 
determine the room of the academic. However, for our application the same extension may be used in many 
rooms, so we discard this idea.  
  Suppose however that our client confirms that the rank of an academic determines the access level 
of his/her extension. For example, suppose a current business rule is that professors get international access 
while lecturers and senior lecturers get local access. This rule might change in time (e.g. senior lecturers 
might be arguing for national access). So to minimize later changes to the schema, we store the rule as data 
in a table (see Table 5). The rule can then be updated as required by an authorized user without having to 
recompile the schema. 
 

Table 5 A functional connection between rank and access level 

Rank Access 

P 
SL 
L 

INT 
LOC 
LOC 

 
 Suppose we verbalize the fact type underlying Table 5 as: Rank ensures AccessLevel. These three lines of 
data can be used to derive the access level of the hundreds of academic extensions, using the following 
derivation rule: 
 

Extension provides AccessLevel iff 
  Extension is used by an Academic  
   who has a Rank that ensures AccessLevel  
 
 Examination of the related portion of the schema indicates that this rule is safe only if each extension 
is used by only one academic, or at least only by academics of the same rank. Let us assume the first, 
stronger condition is verified by the client. In the case of the weaker condition, the constraint must be 

Subject
(code)

Rating
(nr)+

Committee
(name)

teaches

"Teaching !"

serves on

Academic
(empNr)

gets
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specified textually rather than on the diagram. At any rate, by adding the Rank ensures AccessLevel fact type 
and the above derivation rule, we can remove the Extension provides AccessLevel fact type from the diagram. 
 In Step 6 of the CSDP we add any value, set comparison and subtyping constraints. Value constraints 
specify a list of possible values for a value type. These usually take the form of an enumeration or range, 
and are displayed in braces besides the value type or its associated entity type. For example, Rankcode is 
restricted to {‘P’,‘SL’,‘L’} and AccessLevelcode to {‘INT’,‘NAT’,‘LOC’}. These are displayed in the 
global conceptual schema (Figure 9). 
 Set comparison constraints specify subset, equality or exclusion constraints between compatible roles 
or sequences of compatible roles. Compatible roles are played by the same object type (or by object types 
with a common supertype—see later). A subset constraint from one role sequence to another indicates that 
the population of the first must always be a subset of the second, and is denoted by a circled “⊆” with a 
dotted arrow from source to target In Figure 9, a pair-subset constraint runs from the heads predicate to the 
works for predicate, indicating that a person who heads a department must work for the same department.  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9 The final conceptual schema 
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each TeachingProf is both a Teacher and a Professor
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       count each Academic who has Rank and works for Dept

*  define Extension provides AccessLevel as
Extension is used by an Academic who has a Rank that ensures AccessLevel

"Teaching !"
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EmpName

PhoneNr
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u
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⊆
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An equality constraint, denoted by a circled “=”, is equivalent to a pair of subset constraints (one in 
each direction). For example, in this application a person’s home phone is recorded if and only if the person 
heads some department. This could be depicted by an equality constraint between the first roles of two fact 
types: Professor heads Dept; Professor has HomePhoneNr. However we later choose another way of modeling this. 
The constraint that nobody can be tenured and contracted at the same time is shown by an exclusion 
constraint, denoted by a circled “X”. In this case, it overlays an inclusive-or constraint (circled dot) so the 
combination of both constraints appears as “lifebuoy symbol” (exclusive-or constraint).  
 Subtyping is determined as follows. Each optional role is inspected: if the role is played only by some 
well-defined subtype, a subtype node is introduced with this role attached. Subtype definitions are written 
below the diagram and subtype links are shown as directed line segments from subtypes to supertypes. 
Figure 9 contains three subtypes: Teacher; Professor; and TeachingProfessor. In this university, each 
teacher is audited by another teacher (auditing involves observation and friendly feedback). Moreover, only 
professors may be department heads, and only teaching professors can serve on curriculum committees (not 
all universities work this way).  
 Step 7 of the CSDP adds other constraints and performs final checks. We briefly illustrate two other 
constraints. The audits fact type has both its roles played by the same object type (this is called a ring fact 
type). The oir notation beside it indicates the predicate is irreflexive (no teacher audits himself/herself). 
 Suppose we also need to record the teaching and research budgets of the departments. We might 
schematize this as in Figure 10. Here the “2” beside the role played by Dept is a frequency constraint 
indicating that each department that is included in the population of that role must appear there twice. In 
conjunction with the other constraints, this ensures that each department has both its teaching and research 
budgets recorded. 
 
 
 
 
 
 
 
 

Figure 10 Each department has two budgets 

 
 The CSDP ends with some final checks that the schema is consistent with the original examples, 
avoids redundancy, and is complete. No changes are needed for our example. There is a minor derived 
redundancy, since if someone heads a department, we know from the subset constraint that this person 
works for that department; but this is innocuous. Other schematizations are possible (e.g. we can define 
works in and heads to be pair-exclusive, or use a unary is head instead of the binary heads) but we ignore these 
alternatives here. 
 Once the global schema is drafted, and the target DBMS decided, various optimizations can usually be 
performed to improve the efficiency of the logical schema that results from the mapping. Assuming the 
conceptual schema is to be mapped to a relational database schema, the fact type in Figure 10 will map to a 
separate table all by itself (because of its composite uniqueness constraint). Since some other information 
about departments is mapped to another table, if we want to retrieve all the details about departments in a 
single query we will have to perform a table join. Joins tends to slow things down. 
 Moreover, we probably want to compute the total budget of a department, and with the current schema 
this will involve a self-join of the table since the details of the two budgets are on separate rows. We can 
avoid all these problems by transforming the ternary fact type in Figure 10 into the following two binaries 
before we map: Dept has teaching budget of MoneyAmt; Dept has research budget of MoneyAmt. These binaries have 
simple keys, and will map to the “main” department table.  
 Another optimization may be performed which moves the home phone information to Dept instead of 
Professor, but the steps underlying this are a little advanced, so we ignore a detailed discussion of this 
move here. Figure 10 includes both these revisions to the conceptual schema. For a detailed discussion on 
conceptual schema optimization, see [1, chapter 12]. 
 
 

Dept
(name)

Activity
(name)

MoneyAmt
(usd)+

2

... has for ... a budget of ...

{'Teaching',
  'Research'}
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Relational mapping  
 
Once the conceptual schema has been specified, a simple algorithm is used to group these fact types into 
normalized tables. If the conceptual fact types are elementary (as they should be), then the mapping is 
guaranteed to be free of redundancy, since each fact type is grouped into only one table, and fact types 
which map to the same table all have uniqueness constraints based on the same attribute(s).  
 Before discussing the mapping, we define a few terms. A simple key may be thought of as a 
uniqueness constraint spanning exactly one role; a composite key is a uniqueness constraint spanning more 
than one role. A compidot (compositely identified object type) is either a nested object type (an objectified 
predicate) such as Teaching, or a co-referenced object type (its primary reference scheme is based on an 
external uniqueness constraint) such as Room. The basic stages in the mapping algorithm are as follows.  
 
1 Initially treat each compidot as an atomic “black box” by mentally erasing any predicates used in its 

identification, and absorb subtypes into their supertype. 
 

2 Map each fact type with a composite key into a separate table, basing the primary key on this key.  
 
3 Group fact types with simple keys attached to a common object type into the same table, basing the 

primary key on the identifier of this object type. 
 
4 Unpack each mapped compidot into its component attributes. 
 
 With stage 3, a choice may arise with 1:1 binaries. If one role is optional and the other mandatory then 
the fact type is grouped with the object type on the mandatory side. For example, the head-of-department 
fact type is grouped into the department table. Other refinements to the algorithm have been developed (e.g. 
other options for 1:1 cases and subtyping, mapping of independent object types, certain derived fact type 
cases, and partially null keys) but we do not consider these here. 
 Conceptual constraints and derivation rules are also mapped down. An exhaustive treatment of the 
mapping procedure is beyond the scope of this paper. The conceptual schema under discussion maps to the 
relational schema shown in Figure 11. A generic notation (partly graphical) is used to specify the tables and 
constraints of resulting relational schema, and derivation rules are expressed as SQL views.  
 Keys are underlined. If alternate keys exist, the primary key is doubly-underlined. A mandatory role is 
captured by making its corresponding attribute mandatory in its table (not null is assumed by default), by 
marking as optional (in square brackets) all optional roles for the same object type which map to the same 
table, and by running an equality/subset constraint from those mandatory/optional roles which map to 
another table.  
 Most conceptual constraint notations map down with little change. Constraints on lists of role-lists 
(e.g. subset, equality, exclusion) map to corresponding constraints on the attributes to which they map. 
Equality constraints may be shown without arrowheads. Subtype constraints map to qualifications on 
optional columns or subset constraints (e.g. foreign key constraints).  
 Conceptual object types are semantic domains: as current relational systems do not support this 
feature, domain names are usually omitted. Syntactic domains (data types) may be specified next to the 
column names if desired: if the reference mode has a “+”, the default data type is numeric, else the default 
is character string; the designer typically chooses more specific data subtypes as appropriate. 
 The 〈2,1〉 in the pair-subset constraint indicates the source pair should be reversed before the 
comparison, that is the ordered pairs populating Department(headempNr, deptname) must also occur in the 
population of Academic(empNr, deptname).  
 Derived tables are shown below the base tables. The notation “R(..) ::=” is short for “create view R(..) 
as select”. As with conceptual schemas, relational schemas may be displayed with levels of information 
hiding (e.g. for a brief overview, some or all of the constraint layers may be suppressed). 
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Figure 11 The relational schema mapped from Figure 9 

 
 
 
 
 
Conceptual queries 
 
Besides information modeling, ORM is also ideal for information querying. In 1997, InfoModelers Inc.  
released a restricted version of a powerful ORM query tool, named “ActiveQuery”, that enables existing 
relational models to be reverse engineered to ORM models, which may then be queried directly. Moreover, 
any ORM model developed in InfoModeler (version 2.0a onwards) or VisioModeler can immediately be 
queried with ActiveQuery, without the need for any reverse engineering. ActiveQuery enables users to 
query an ORM model directly without prior knowledge of either the conceptual schema or the 
corresponding relational schema, by dragging object types onto the query pane, selecting predicates of 
interest, applying restrictions and functions as desired, and ticking the items to be listed. With the 
acquisition of InfoModelers by Visio Corporation, which in turn was acquired by Microsoft Corporation, 
the ActiveQuery product is no longer available. However Microsoft has made VisioModeler available as a 
free download, and it is possible that the technology underlying ActiveQuery may appear in some later 
tool. 
 As a simple example of a conceptual query, consider the following English query on our academic 
database: list the empNr, empname and number of subjects taught for each academic who occupies a room 
in the Chemistry building and teaches more than two subjects. In ActiveQuery this may be formulated by 
drag-and-drop basically as follows: 
 

Building ( bldgnr, bldgname )

 {L,S,P}  {INT,NAT,LOC}
PhoneAccess ( rank, accesslevel )

Department ( deptname, headempnr, homephone, teachingbudget,
                                                         researchbudget )

      {P,SL,L}
Academic ( empnr, empname, deptname , extn, rank, bldgnr, roomnr,

 tenured, [enddate] 1, [chair]2, [auditor]3,4 )
   {Y,N}

Award ( empnr, degree, university )

Teaching ( empnr, subject , [rating] )
    {1..7}

CteeMember ( empnr, committee  )

1 exists iff tenured = 'N'
2 exists iff rank = 'P'
3 <> empnr
4 exists iff empnr in Teaching.empnr
5 only where rank = 'P'

* Provides ( extn, accesslevel ) ::= extn, accesslevel from
Academic natural join PhoneAccess

* Employs ( deptname, rank, nrstaff ) ::= deptname, rank, count(*)
from Academic
group by deptname, rank

<2,1>

5

5
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 Academic 
  ├─ is identified by  EmpNr 
  ├─ has Empname 
  ├-─ occupies Room 
  │     └─- is in Building 
  │    └─- has BldgName ‘Chemistry’ 
  └─- teaches Subject  
    └─- count (Subject) for Academic > 2 

 
 A verbalization of the query is automatically generated, as well as SQL code similar to the following: 
 

 select X1.empnr, X1.empname, count(*) 
 from   Academic as X1, Building as X2, Teaching as X3 
 where X1.bldgnr = X2.bldgnr 
     and X1.empnr = X3.empnr 
     and X2.bldgname = ‘Chemistry’ 
 group by X1.empnr, X1.empname 
 having count(*) >2 

 
It should be obvious that formulating queries in terms of objects and predicates is much easier than 
deciphering the semantics of the relational schema and coding in SQL or QBE. For further details about 
conceptual queries in ORM, see [1, 2, 3]. 
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