
ORM 2

Terry Halpin

Neumont University
Salt Lake City, Utah, USA.

e-mail: terry.halpin@neumont.edu

Abstract: Object-role Modeling (ORM) is a fact-oriented modeling approach
for specifying, transforming, and querying information at a conceptual level.
Unlike Entity-Relationship modeling and Unified Modeling Language class
diagrams, fact-oriented modeling is attribute-free, treating all elementary facts
as relationships. For information modeling, fact-oriented graphical notations are
typically far more expressive than other notations. Introduced 30 years ago,
ORM has evolved into closely related dialects, and is supported by industrial
and academic tools. Industrial experience has identified ways to improve cur-
rent ORM languages (graphical and textual) and associated tools. A project is
now under way to provide tool support for a second generation ORM (called
ORM 2), that has significant advances over current ORM technology. This pa-
per provides an overview of, and motivation for, the enhancements introduced
by ORM 2, and discusses an open-source ORM 2 tool under development.

1 Introduction

Object-Role Modeling (ORM) is a fact-oriented approach for modeling, transforming,
and querying business domain information in terms of the underlying facts of interest,
where all facts and rules may be verbalized in language readily understandable by
non-technical users of those business domains. Unlike Entity-Relationship (ER) mod-
eling [6] and Unified Modeling Language (UML) class diagrams [31, 32, 33], ORM
treats all facts as relationships (unary, binary, ternary etc.). How facts are grouped
into structures (e.g. attribute-based entity types, classes, relation schemes, XML
schemas) is considered an implementation issue irrelevant to capturing business se-
mantics. Avoiding attributes in the base model enhances semantic stability and popu-
latability, and facilitates natural verbalization. For information modeling, fact-
oriented graphical notations are typically far more expressive than other graphical no-
tations. Fact-oriented textual languages are based on formal subsets of native lan-
guages, so are easier to understand by business people than technical languages like
the Object Constraint Language (OCL) [35]. Fact-oriented modeling includes proce-
dures for mapping to attribute-based structures, such as those of ER or UML. For a
basic introduction to ORM, see [14], and for a thorough treatment see [15].

Though less well known than ER and object-oriented approaches, fact-oriented
modeling has been used successfully in industry for over 30 years, and is taught in
universities around the world. The fact-oriented approach comprises a family of
closely related “dialects”, some using the generic term “Object-Role Modeling”
(ORM) [15], and some using different names such as Natural language Information

mailto:terry.halpin@northface.edu

Analysis Method (NIAM) [12, 36], and Fully-Communication Oriented Information
Modeling (FCO-IM) [1, 2]. ORM languages include RIDL [30], LISA-D [26, 27] and
FORML [15]. Though using a different notation, the Object-oriented Systems Model
(OSM) [11] is a close relative to ORM, with its attribute-free approach.

Commercial tools supporting the fact-oriented approach include the ORM solution
within Microsoft’s Visio for Enterprise Architects [23], and the FCO-IM tool Case-
Talk [5]. Free ORM tools include VisioModeler [34] and Infagon [28], as well as
various academic prototypes. Dogma Modeler [10], an ORM-based tool for specify-
ing ontologies, is currently being significantly extended.

Industrial ORM experience has identified ways to improve current ORM languages
(graphical and textual) and tools. Our project aims to specify and provide tool support
for a second generation ORM (called ORM 2), that has significant advances over cur-
rent ORM technology in both functionality and usability. This paper overviews and
motivates several enhancements introduced by ORM 2, and discusses our tool under
development to support it. The initial development team comprised of faculty and
students at Neumont University is being expanded to include external collaborators
from industry and academia. The current implementation is coded in C# as a free,
open-source plug-in to Microsoft Visual Studio .NET, using the new Microsoft De-
signer Framework Software Development Kit for building domain specific languages.

The rest of this paper is structured as follows. Section 2 focuses on improvements
made to the ORM graphical notation. Section 3 discusses enhancements to the ORM
textual notation. Section 4 discusses tooling aspects. Section 5 summarizes the main
results, suggests topics for further research, and lists references. An online appendix
includes sample schemas in the new notation, and a screen shot from the new tool.

2 The ORM 2 Graphical Notation

This section includes sample diagrams to contrast the new notation with the current
notation used by the ORM source model solution in Microsoft Visio for Enterprise
Architects [23]. The main objectives for the ORM 2 graphical notation are:

• More compact display of ORM models without compromising clarity
• Improved internationalization (e.g. avoid English language symbols)
• Notation changes acceptable to a short-list of key ORM users
• Simplified drawing rules to facilitate creation of a graphical editor
• Full support of textual annotations (e.g. footnoting of textual rules)
• Extended use of views for selectively displaying/suppressing detail
• Support for new features (e.g. role path delineation, closure aspects, modalities)

Although far more expressive graphically than UML or industrial ER for static data

models, ORM schema diagrams typically consume more space because of their at-
tribute-free nature (which also leads to greater semantic stability). The larger diagram
size problem may be ameliorated by providing attribute-views on demand, and/or by
redesigning the ORM graphic notation to be more compact. The first solution includes
displaying “minor fact types” as attributes on an ORM diagram, and automatically

generating attribute-based schemas for implementation (e.g. relational schemas, OO
class schemas, XML schemas). As we have not yet completed our implementation of
attribute view toggles, we instead focus on the new ORM graphical notation we have
implemented. This notation is more compact, typically yielding diagrams about 65%
the size of an equivalent diagram in the old notation. All English-specific symbols in
the old notation have been replaced by language-neutral symbols to improve localiza-
tion in different language communities. A survey was issued to eighteen ORM ex-
perts. Each change introduced by the new notation was acceptable to a majority.

Most of the ORM 2 figures in this paper were drawn using an ORM2 Visio stencil
that our team created. Currently, the stencil may be used for drawing purposes only.
In contrast, the ORM 2 modeling tool is intended to support automatic transformation
between graphical and textual representations, as well as transformation to/from other
schemas (e.g. relational, class, and XML schemas), and code generation (e.g. to DDL
or program code). The tool is also intended to front-end other modeling tools (e.g. one
might enter and transform an ORM schema to a relational schema for export to an-
other database design tool to generate the DDL code). As schemas developed in the
tool are fully exposed as XML, there is significant scope for inter-operability.

2.1 Object Type Shapes

In the old ORM notation, object type (entity type and value type) shapes are depicted
by named ellipses. Ellipses are faster for users to draw manually, but they consume
more space than rectangles (hard or soft), especially when names are long. For ORM
2, the default shape for object types is a soft rectangle (rectangle with rounded cor-
ners). Besides providing a more compact container for the enclosed text, this is con-
sistent with the current notation for nested object types. The shape auto-sizes to pro-
vide appropriate white space around the text. Users may spread text over multiple
lines (as in the Visio ORM source solution). Text is displayed in a user-definable de-
fault style, individual text elements may be user-selected for alternate styles, and text
may be left/center/right justified.

To make this notation change more acceptable, we allow an ellipse or a hard rec-
tangle as an alternative shape for object types, as set by a configuration option. Fig. 1
shows some examples. If the ellipse option is chosen, the shape is still more compact
than the old notation. Object type shape examples in the rest of this document use the
default shape (soft rectangle). Of the 18 experts in the survey, 12 preferred the soft
rectangle, 5 preferred the ellipse shape, and one preferred the hard rectangle.

 Activity

(Code)

Activity
Name

Activity
(Code)

Activity
Name

Activity
(Code)

Activity
Name

(a) (b) (c) (d) Activity
(Code)

Activity
Name

Fig. 1. Object type shapes in (a) old and new notations: (b) default: (c) and (d) alternatives

2.2 Shapes and Readings for Predicates and Roles

To save space, the size of the role boxes is significantly reduced (see Fig. 2). A line
connecting a role box to an object type shape goes from the mid-point of an outer
edge of the role box to the center of the object type shape (unlike the old solution,
which uses connection points). Predicate readings may be user-positioned beside the
predicate shape. Although it is no longer possible to place a predicate reading inside a
role box, as in Fig. 2(a), the role boxes may now be used to include role sequence de-
tails (to disambiguate role paths). By default, all text is in 7 point Tahoma (Visio uses
8 point Arial). Of the 18 experts surveyed, 14 approved the changes.

The reduced role box size allows multiple single-role set-comparison constraints,
(Fig. 2(d)). Unlike the old notation in Fig. 2(c), to add an extra set-comparison con-
straint between the role-pairs the new notation requires moving a constraint to make
room for the third constraint, but since such cases are rare this minor inconvenience is
acceptable. The size of the constraint bubbles is slightly reduced in the new notation.

Activity
(Code)

Activity
Namehas

(a)

A BA B

Activity
(Code)

Activity
Namehas

(b)

(c) (d)

Fig. 2. The role box and text size in ORM (left side) is reduced in ORM 2 (right side)

A forward predicate reading is read left-to-right or top-to-bottom, and an inverse
predicate reading (pre-pended by “« ”, or possibly an arrow-head “ ”) is read right-to-
left or bottom-to-top. Two binary predicate readings may be displayed together, sepa-
rated by a slash, or separately on either side of the predicate shape with the inverse
reading pre-pended by “« ”. The display of any predicate reading may be toggled
on/off. Multi-line reading displays are allowed. Fig. 3(b) shows some possibilities.

For a fact type with n roles (n > 0), ORM 2 allows predicate readings for all possi-
ble (n!) permutations of role orderings. For each such role ordering, one or more alias
readings may be supplied (e.g. “is employed by” as an alias of “works for”). Query
navigation in relational style from any role of an n-ary fact type is enabled by just n
predicate readings (one starting at each role), but industrial modelers requested this
additional flexibility. For non-binary fact types, at most one predicate reading is dis-
played on the diagram. ORM 2 allows a name (as distinct from a reading) for the fact
type (e.g. “Birth” for Person was born on Date), though this is not normally displayed on
the diagram. One use of fact type names is to generate a suitable target name for fact
types that map to a single table or class. Multi-line fact type names are allowed.

The display of role names in square brackets (Fig. 3(c)) may be user-positioned
and toggled on/off. Multi-line role names are allowed. The display toggle may be set
globally or on an individual role basis. Although each fact type has at least one predi-
cate reading, the display of predicate readings may be suppressed (e.g. to focus on
role names). By default, role names are displayed in a different color (e.g. indigo).

Person Country
was born in

« is birthplace ofPerson Country

was born in / is birthplace of

(a) (b)

Person Country
was born in / is birthplace of

Person Country

was born in /
is birthplace of

Person Country
[birthCountry]

[native](c)

(a)
P

(b)

Fig. 3. Predicate and role readings display in (a) ORM and (b), (c) ORM 2

Apart from size reduction, objectification in ORM 2 allows nesting of unary predi-
cates, as well as predicates with non-spanning uniqueness constraints, in accordance
with new formal semantics and guidelines for objectification for ORM 2 [16, 22].

2.3 Uniqueness Constraints

Internal uniqueness constraints apply to single predicates, and appear in ORM as ar-
row-tipped lines. ORM 2 instead uses simple lines, which are faster to draw manually,
and intuitively correspond to the common practice of underlining keys (Fig. 4(b)).
The line is shorter than the role box length to avoid ambiguity. The old ORM notation
marks a primary uniqueness constraint as “P”. In ORM 2, a preferred uniqueness con-
straint is indicated by a double line (as in the practice of doubly underlining primary
keys when alternate keys exist). This also avoids the English bias of “P”. In ORM 2
the notion of preferred uniqueness is conceptual (a business decision to prefer a par-
ticular identification scheme). By default, all ORM 2 constraints are colored violet.

In the case of an internal uniqueness constraint that spans non-contiguous roles, a
dashed line bridges the gap across the inner role(s) that are excluded from the con-
straint. Such a case may arise only if the association is ternary or higher. For example,
the upper uniqueness constraint on the ternary in Fig. 4 spans the first and last roles.
Of the 18 experts surveyed, 17 preferred the new internal constraint notation.

An external uniqueness constraint spans roles from different predicates. The old
ORM notation depicts this by a circled “U” (for unique), or “P” (for “primary”) if
used for primary reference (Fig. 4(a)). This notation is biased towards English, and
differs totally from the internal uniqueness notation. For localization and consistency,
the new notation (Fig. 4(b)) uses a circled underline, or a circled double underline if
the constraint provides the preferred identification scheme (consistent with the new
internal uniqueness constraint notation and the horizontal notation for relational
schemas [15]). Of the 18 experts surveyed, 14 preferred this new constraint notation.

Fig. 4. Uniqueness constraints in (a) ORM and (b) ORM 2

2.4 Mandatory Role Constraints

In the old ORM notation, simple mandatory role constraints are indicated by a solid
dot either (a) at the intersection of an entity type shape and the line connecting it to a
role, or (b) at the role end. Option (b) avoids ambiguity when an object type plays
many mandatory roles whose connections to the object type are too close to distin-
guish the role to which the dot applies. Disjunctive mandatory (inclusive-or) con-
straints are depicted by placing the solid dot in a circle connected by dotted lines to
the roles it applies to. ORM 2 retains this notation, except that the solid dot is consis-
tently colored violet and a global configuration option determines the default place-
ment of simple mandatory dots at the role or object type end. Users may override this
global setting on an individual role basis. Fig. 5 shows some simple examples.

was born in

(a) (b)
Client
(Id)

Country
(Code)

Client
(Id)

SSN

Client
(Id)

Country
(Code)

Driver
LicenseNr

was born in

has

has

was born in

Client
(Id)

Country
(Code)

 has

Client
(Id)

has

SSN

Driver
LicenseNr

Fig. 5. Mandatory constraints in (a) ORM and (b) ORM 2

2.5 Set-comparison, Exclusive-Or, Frequency and Value Constraints

Subset, exclusion, and equality constraints continue to be denoted by a circled ⊆, ×, =
respectively, connected to the relevant roles by dashed lines, except that the ORM 2
shapes are a bit smaller, with refined symbols. In addition, ORM 2 supports the n-ary
version of the equality constraint. As usual, exclusive-or constraints are denoted by
combining the circled × with the circled dot, and users may display the two compo-
nent constraints overlaid or separately (as in Visio). Fig. 6(b) shows the basic shapes.

Frequency constraints are displayed as in Visio, except that single symbols (≤, ≥)
replace double symbols (<=, >=), for example 2, ≥3, 2..5. Value constraints are de-
noted as in Visio, except that many values may be displayed on a single line (e.g.
{‘M’, ‘F’}, {‘a’,..’z’}), and open ranges are supported (e.g. “> 0” for PositiveReal).

= +

(a) (b)

Role
(nr)

Multiplicity
(Code)

has minimum-

has maximum-

{‘0’, ‘1'}

{‘1’, ‘n'}

{‘0’, ‘1’, ‘n’}
(c)

Fig. 6. Set-comparison, Xor and value constraints

ORM 2 allows value constraints on roles, not just object types. For example, the
Information Engineering metamodel fragment in Fig. 6(c) includes value constraints
on the minMultiplicity and maxMultiplicity roles. Of the 18 experts surveyed, all fa-
vored support for open ranges, and 17 favored role-based value constraints.

2.6 Ring Constraints and Subtyping

The current Visio ORM tool uses English abbreviations for various ring constraints:
ir = irreflexive, as = symmetric, ans = antisymmetric, it = intransitive, ac = acyclic,
sym =symmetric. Ring constraints are displayed as a list of one or more of these op-
tions, appended to a ring symbol “O”, and connected to the two relevant roles (if
placed very close, the connection display is suppressed). For example, the reporting
relationship is declared to be acyclic and intransitive as shown in Fig. 7(a).

This old notation has disadvantages: the abbreviations are English-specific (e.g.
Japanese readers might not find “ir” to be an intuitive choice for irreflexivity); and the
ring constraint display tends to cross over other lines (as in the example). To remove
the English bias, and suggest the constraint semantics, ORM 2 uses intuitive icons. To
reduce edge crossings, ORM 2 omits role links if the predicate has just two roles
played by the same object type (or compatible object types). For example, in ORM 2
the reporting relationship is declared acyclic and intransitive as shown in Fig. 7(b).

reflexive symmetric transitive

irreflexive asymmetric intransitive acyclicantisymmetric

Employee
(EmpNr)

(ac,it)

reports to

(a) (b)
Employee
(EmpNr)

reports to

Fig. 7. Acyclic and Intransitive ring constraints depicted in (a) ORM and (b) ORM 2

The ORM 2 icons for ring constraints are loosely based on our icons for teaching
ring constraints [15, sec. 7.3], where small circles depict objects, arrows depict rela-
tionships, and a bar indicates forbidden (Fig. 8). The different node fills in the anti-
symmetric icon indicate that the inverse relationship is forbidden only if the objects
differ (in the other icons, the objects may be the same). For diagramming purposes,
these teaching icons take up too make room, especially when combinations of ring
constraints apply.

Fig. 8. The original icons used for teaching ring constraints

So simplifying adaptations were made to ensure the final icons are distinguishable
while maintaining a compact footprint. The ORM 2 icons (Fig. 9) print clearly at 600
dpi, and are readable on screens at typical resolutions used for industrial modeling.
They may be distinguished on low resolution screens by increasing the zoom level.
ORM 2 has an icon for each of the ten simple or combined ring constraint choices
supported by the current ORM source model solution. In contrast to the teaching
icons, arrow-heads are removed (they are assumed), and relevant pairs of constraints
are collapsed to a single icon. While the simplified icons are less intuitive than the
teaching icons, once their origin is explained it should be easy to remember their
meaning. Of the 18 experts surveyed, 14 agreed to the new ring constraint icons.

 Irreflexive

Symmetric

Asymmetric

Antisymmetric

Intransitive

Acyclic

Acyclic and Intransitive

Asymmetric and Intransitive

Symmetric and Intransitive

Symmetric and Irreflexive

Fig. 9. ORM 2 icons for ring constraints

The current arrow notation for subtyping will remain, perhaps supplemented by
Euler diagrams as an alternative display option for simple cases. ORM 2 adds support
for explicit display of subtype exclusion (⊗) and exhaustion () constraints, overlay-
ing them when combined, as shown in Fig. 10. As such constraints are typically im-
plied by other constraints in conjunction with subtype definitions, their display may
be toggled on/off. Of the 18 experts surveyed, 17 approved this extension.

 Person

(SSN)

Male
Person

Female
Person

Gender
(Code)is of

{‘M’, ‘F’}

Fig. 10. Explicit display of exclusion and exhaustion constraints for a subtyping scheme

3 The ORM 2 Textual Notation

ORM 2 will support a high level, formal, textual language for the declaration of ORM
schemas (including fact types, constraints and derivation rules), ORM queries, and
possibly fact addition and deletion. The tool will generate code to implement the se-
mantics conveyed by the textual language. The textual language will be cover all the
semantics conveyed by the graphical language, as well as additional semantics (e.g.
constraints that cannot be captured graphically). All graphical constraints will have

automated constraint verbalizations, using improvements discussed elsewhere [19].
Unlike the Visio ORM solution, the ORM 2 textual language may be used to input
models, instead of being merely an output language for verbalizing diagrams.

Textual constraints may be noted on the diagram by footnote numbers, with the
textual reading of the constraints provided in footnotes that can be both printed and
accessed interactively by clicking the footnote number. Fig. 11 provides an example.
Of the 18 experts surveyed, 17 approved the use of footnotes for textual constraints.

Derivation rules may be specified for derived object types (subtype definitions)
and derived fact types. ORM 2 allows fully-derived subtypes (full subtype definition
provided), partly-derived subtypes (partial subtype definition provided) and asserted
subtypes (no subtype definition provided). Subtype definitions will be supported as
derivation rules in a high level formal language rather than mere comments, and may
be displayed in text boxes as footnotes on the diagram. Iff-rules are used for full deri-
vation, and if-rules for partial derivation. Here are sample rules in both ORM 2’s tex-
tual language and predicate logic for fully and partly derived subtypes respectively:

Each Australian is a Person who was born in Country ‘AU’.
∀x [Australian x ≡ ∃y:Country ∃z:CountryCode (x was born in y & y has z & z = ‘AU’)]

 Person1 is a Grandparent if Person1 is a parent of some Person2 who is a parent of some Person3.
 ∀x:Person [Grandparent x ⊂ ∃y:Person ∃z:Person (x is a parent of y & y is a parent of z)]

The final grammar for the textual language is not yet determined, but should sup-

port declaration of ORM models and queries in relational style, attribute style and
mixed style. Relational style uses predicate readings (e.g. the subtype definitions
above), while attribute style uses role names. Attribute style is especially useful for
derivation rules and textual constraints of a mathematical nature (e.g. see Fig. 11).

As an example of a derivation rule for a derived fact type, we may define the uncle
association in relational style thus: Person1 is an uncle of Person2 iff Person1 is a brother of a
Person3 who is a parent of Person2. Assuming the role names “brother” and “parent” are
declared, we may also specify the rule in attribute style thus: For each Person: uncle =
brother of parent. Further examples may be found elsewhere [19, 21].

GIrange !
(LevelName)

GlycemicIndex
(Nr)

has minimum-

has maximum-

[minGI]

[maxGI]

1

1 For each GIrange: minGI < maxGI

Fig. 11. Textual constraints appear as footnotes in ORM 2

4 Tooling Aspects

This section briefly considers further aspects of the ORM 2 tool. A screen shot from
the tool illustrating use of Intellisense in the fact editor is accessible online at
www.orm.net/orm2/dietschema.doc. There is no space here to detail the tool’s fea-
tures, but the tool should significantly extend the functionality of Microsoft’s current

ORM tool, both by supporting ORM 2 and by adding features. For example, reference
modes are treated as views of reference fact types, and the tool allows automatic tog-
gling of the display between the implicit (reference mode) and explicit (reference fact
type) representations. This toggle capability is being extended to support attribute-
based displays as views of the underlying fact-based schemas. Full integration with
Visual Studio provides a powerful and familiar environment for developers, and the
architecture and open source nature facilitates adaptation and extensions by others.

The ability to hide/show types of constraints by placing them on different layers
should be at least as versatile at that in the Visio solution, which offers 5 layers. The
ORM 2 tool will probably extend this to allow suppressing display of all constraints
(including internal uniqueness and mandatory constraints).

One abstraction mechanism provided by the Visio ORM solution is the ability to
spread a model over many pages, where each page focuses on a sub-area of the busi-
ness domain. Model elements may be redisplayed multiple times on different pages,
as well as on the same page (to reduce edge-crossings). The Show-Relationships fea-
ture is indispensable for revealing connections (and for other reasons). At a minimum,
this functionality should be supported. Ideally, users should be able to decompose
models into multiple levels of refinement, and abstract upwards, with the tool auto-
mating the process via the major object type algorithm [3, 15] or a similar technique.

5 Conclusion

This paper discussed a project under way to specify and provide open source tool
support for a second generation ORM (called ORM 2), that provides significant ad-
vances over current ORM technology. Proposed changes to the graphical notation
were described, and their motivation explained. Results from a survey of ORM ex-
perts with regard to these changes were noted. Various enhancements to the ORM
textual notation were examined, and some improvements from a tooling perspective
were identified. To better appreciate the difference made by the new notation, a three
page Diet model in both the Visio ORM source model notation and the ORM 2 nota-
tion is available as an online appendix at http://www.orm.net/orm2/dietschema.doc.

Parties who own a copy of Visio (Standard edition or higher) and who wish to ex-
plore the new graphical notation using models of their own may download a zip file
containing the Visio ORM 2 stencil and template plus a sample model file from the
following site: www.orm.net/ORM2_Beta.zip. This ORM 2 stencil is for drawing
only—it does not generate code. Parties who wish to collaborate in the actual devel-
opment of the open source ORM 2 tool should e-mail the author of this paper.

The tools project team is currently researching extensions to ORM in several areas,
including richer support for join constraints (e.g. distinguishing inner-outer join se-
mantics, displaying complex join constraints, and role path disambiguation [20]), ex-
tended open/closed world semantics, and deontic/alethic constraint distinctions [19].

Acknowledgements

This paper benefited from discussion with the tools project team at Neumont Univer-
sity, and from the ORM 2 survey responses by Don Baisley, Dick Barden, Scott

Becker, Linda Bird, Anthony Bloesch, Necito dela Cruz, Dave Cuyler, Lance Delano,
Jan Dietz, Ken Evans, Gordon Everest, Brian Farish, Pat Hallock, Bill MacLean, John
Miller, Borje Olsson, Erik Proper and Pieter Verheyden.

References

1. Bakema, G., Zwart, J. & van der Lek, H. 1994, ‘Fully Communication Oriented

NIAM’, NIAM-ISDM 1994 Conf. Working Papers, eds G. M. Nijssen & J. Sharp,
Albuquerque, NM, pp. L1-35.

2. Bakema, G., Zwart, J. & van der Lek, H. 2000, Fully Communication Oriented
Information Modelling, Ten Hagen Stam, The Netherlands.

3. Bird, L., Goodchild, A. & Halpin, T.A. 2000, ‘Object Role Modeling and XML
Schema’, Conceptual Modeling – ER2000, Proc. 19th Int. ER Conference, Salt
Lake City, Springer LNCS 1920, pp. 309-322.

4. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proc.
ER’97: 16th Int. Conf. on conceptual modeling, Springer LNCS, no. 1331, pp.
113-26.

5. CaseTalk website: http://www.casetalk.com/php/.
6. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of

data’. ACM Transactions on Database Systems, 1(1), pp. 9−36.
7. Cuyler, D. & Halpin, T. 2005, ‘Two Meta-Models for Object-Role Modeling’,

Information Modeling Methods and Methodologies, eds J. Krogstie, T. Halpin, &
K. Siau, Idea Publishing Group, Hershey PA, USA (pp. 17-42).

8. Demey J., Jarrar M. & Meersman R. 2002, ‘A Markup Language for ORM Busi-
ness Rules’, in Schroeder M. & Wagner G. (eds.), Proc. International Workshop
on Rule Markup Languages for Business Rules on the Semantic Web (RuleML-
ISWC02 workshop), pp. 107-128, online at
http://www.starlab.vub.ac.be/publications/STARpublications.htm.

9. De Troyer, O. & Meersman, R. 1995, ‘A Logic Framework for a Semantics of
Object Oriented Data Modeling’, OOER’95, Proc. 14th International ER Confer-
ence, Gold Coast, Australia, Springer LNCS 1021, pp. 238-249.

10. DogmaModeler: www.starlab.vub.ac.be/research/dogma/dogmamodeler/dm.htm.
11. Embley, D.W. 1998, Object Database Management, Addison-Wesley, Reading

MA, USA.
12. Falkenberg, E. D. 1976, ‘Concepts for modelling information’, in Nijssen G. M.

(ed) Proc 1976 IFIP Working Conf on Modelling in Data Base Management Sys-
tems, Freudenstadt, Germany, North-Holland Publishing, pp. 95-109.

13. Halpin, T. 1989, ‘A Logical Analysis of Information Systems: static aspects of
the data-oriented perspective’, doctoral dissertation, University of Queensland.

14. Halpin, T. 1998, ‘ORM/NIAM Object-Role Modeling’, Handbook on Informa-
tion Systems Architectures, eds P. Bernus, K. Mertins & G. Schmidt, Springer-
Verlag, Berlin, pp. 81-101.

15. Halpin, T. 2001, Information Modeling and Relational Databases, Morgan
Kaufmann, San Francisco.

16. Halpin, T. 2003, ‘Uniqueness Constraints on Objectified Associations’, Journal
of Conceptual Modeling, Oct. 2003. URL: www.orm.net/pdf/JCM2003Oct.pdf.

http://www.starlab.vub.ac.be/publications/iswc02rml.pdf
http://www.starlab.vub.ac.be/publications/iswc02rml.pdf

17. Halpin, T. 2004, ‘Comparing Metamodels for ER, ORM and UML Data Models’,
Advanced Topics in Database Research, vol. 3, ed. K. Siau, Idea Publishing
Group, Hershey PA, USA, Ch. II (pp. 23-44).

18. Halpin, T. 2004, ‘Information Modeling and Higher-Order Types’, Proc.
CAiSE’04 Workshops, vol. 1, (eds Grundspenkis, J. & Kirkova, M.), Riga Tech.
University, pp. 233-48. Online at http://www.orm.net/pdf/EMMSAD2004.pdf.

19. Halpin, T. 2004, ‘Business Rule Verbalization’, Information Systems Technology
and its Applications, Proc. ISTA-2004, (eds Doroshenko, A., Halpin, T. Liddle,
S. & Mayr, H), Salt Lake City, Lec. Notes in Informatics, vol. P-48, pp. 39-52.

20. Halpin, T. 2005, ‘Constraints on Conceptual Join Paths’, Information Modeling
Methods and Methodologies, eds J. Krogstie, T. Halpin, T.A. & K. Siau, Idea
Publishing Group, Hershey PA, USA, pp. 258-77.

21. Halpin, T. 2005, ‘Verbalizing Business Rules: Part 11’, Business Rules Journal,
Vol. 6, No. 6. URL: http://www.BRCommunity.com/a2005/b238.html.

22. Halpin, T. 2005, ‘Objectification’, Proc. CAiSE’05 Workshops, vol. 1, eds J. Ca-
lestro & E. Teniente, FEUP Porto (June), pp. 519-31.

23. Halpin, T., Evans, K, Hallock, P. & MacLean, W. 2003, Database Modeling with
Microsoft® Visio for Enterprise Architects, Morgan Kaufmann, San Francisco.

24. Halpin, T. & Proper, H. 1995, ‘Database schema transformation and optimiza-
tion’, Proc. OOER’95: Object-Oriented and Entity-Relationship Modeling,
Springer LNCS, vol. 1021, pp. 191-203.

25. Halpin, T. & Wagner, G. 2003, 'Modeling Reactive Behavior in ORM'. Concep-
tual Modeling – ER2003, Proc. 22nd ER Conference, Chicago, October 2003,
Springer LNCS.

26. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, ‘Formal
definition of a conceptual language for the description and manipulation of in-
formation models’, Information Systems, vol. 18, no. 7, pp. 489-523.

27. ter Hofstede A. H. M, Weide th. P. van der 1993, ‘Expressiveness in conceptual
data modeling’, Data and Knowledge Engineering, 10(1), pp. 65-100.

28. Infagon website: http://www.mattic.com/Infagon.html.
29. Lyons, J. 1995, Linguistic Semantics: An Introduction, Cambridge University

Press: Cambridge, UK.
30. Meersman, R. M. 1982, The RIDL conceptual language. Research report, Int.

Centre for Information Analysis Services, Control Data Belgium, Brussels.
31. Object Management Group 2003, UML 2.0 Infrastructure Specification. Online:

www.omg.org/uml.
32. Object Management Group 2003, UML 2.0 Superstructure Specification. Online:

www.omg.org/uml.
33. Rumbaugh J., Jacobson, I. & Booch, G. 1999, The Unified Language Reference

Manual, Addison-Wesley, Reading, MA.
34. VisioModeler download site: http://www.microsoft.com/downloads/

results.aspx?displaylang=en& freeText=VisioModeler.
35. Warmer, J. & Kleppe, A. 1999, The Object Constraint Language: precise model-

ing with UML, Addison-Wesley.
36. Wintraecken J. 1990, The NIAM Information Analysis Method: Theory and Prac-

tice, Kluwer, Deventer, The Netherlands.

