
1

Logical Data Modeling: Part 5

Terry Halpin
INTI International University

This is the fifth article in a series on logic-based approaches to data modeling. The first article [5] briefly
overviewed deductive databases, and illustrated how simple data models with asserted and derived facts
may be declared and queried in LogiQL [2, 11, 13], a leading edge deductive database language based on
extended datalog [1]. The second article [6] discussed how to declare inverse predicates, simple mandatory
role constraints and internal uniqueness constraints on binary fact types in LogiQL. The third article [7]
explained how to declare n-ary predicates and apply simple mandatory role constraints and internal
uniqueness constraints to them. The fourth article [8] discussed how to declare external uniqueness
constraints in LogiQL. The current article covers derivation rules in a little more detail, and shows how to
declare inclusive-or constraints in LogiQL. The LogiQL code examples are implemented using the free,
cloud-based REPL (Read-Eval-Print-Loop) tool for LogiQL that is accessible at
https://developer.logicblox.com/playground/.

Some More Examples of Derivation Rules

Figure 1 shows a genealogy chart for the ancient Egyptian god Ra and nine of his descendants, who were
collectively known as the Ennead or “Nine Gods” of Heliopolis. Each arrow depicts a parenthood
relationship pointing from parent to child. According to the legend, Ra needed no consort, and simply spat
or sneezed out Shu and Tefnut, and later created humanity from his own tears. Descendants other than the
Ennead (e.g. Anubis is a son of Nepththys) are excluded from consideration.

Figure 1 Parenthood chart of the Egyptian god Ra and the nine gods of Heliopolis.

Figure 2(a) models this example with a populated Object-Role Modeling (ORM) [9, 10] diagram,

showing both a forward predicate reading (“is a parent of”) and an inverse predicate reading (“is a child
of”) for the parenthood relationship. Mainly to generate convenient column names for the relational
mapping, role names (“parent”, “child”) for the parenthood relationship are also provided. The example is
also schematized in Figure 2(b) as an Entity Relationship diagram in Barker notation (Barker ER) [3], in
Figure 2(c) as a class diagram in the Unified Modeling Language (UML) [14], and in Figure 2(d) as a
relational database (RDB) schema.

2

EgyptianGod
(.Name)

is a parent of / is a child of

Geb

Geb

Geb

Geb

Tefnut

Tefnut

Shu

Shu

Ra

Ra

Seth

Nephthys

Osiris

Isis

Nut

Geb

Nut

Geb

Tefnut

Shu

Osiris

Isis

Nut

Nut

Nut

Nut

Horus

Horus

Seth

Nephthys

Osiris

Isis

(a)
EGYPTIAN GOD

* god name

a child of

a parent of

(b)

name {id}

EgyptianGod
(c)

parent child* *

[parent] [child]

(d)

Figure 2 Data model for Figure 1 in (a) ORM, (b) Barker ER, (c) UML, and (d) relational database notation.

Although not shown in Figure 2, additional constraints apply to the parenthood relationship (e.g. each
god has at most two parents, and no god may be its own parent). Such additional constraints will be
covered later articles.

In the ORM schema in Figure 2(a), the preferred reference scheme for EgyptianGod is depicted by the
popular reference mode “Name” shown in parentheses. The spanning uniqueness constraint over the
parenthood fact type (shown as a bar over the constrained roles), indicates that the relationship is many-to-
many. The absence of a mandatory role dot on the roles indicates that each role in the parenthood fact type
is optional.

The Barker ER schema in Figure 2(b) depicts the primary reference scheme for EgyptianGod by
prepending an octothrope “#” to the god name attribute, with an asterisk “*” to indicate the attribute is
mandatory. The many-to-many nature of the parenthood relationship is depicted by a crowsfoot at each
end, and the optionality of the roles is indicated by using a dashed line for the relationship.

The UML class diagram in Figure 2(c) depicts the primary identification for EgyptianGod by
appending “{id}” to the name attribute. The multiplicity constraints shown as a star (“*”) at both ends of
the parenthood association indicates the optional, many-to-many nature of the association.

Figure 2(d) shows the relational database schema diagram generated by the NORMA tool [4] from the
ORM schema. Here, prepending “PK” to the child and parent attributes indicates that their combination
provides the primary key of the table and hence each (parent, child) entry is unique.

Now suppose that it is also of interest to know who is a grandparent of whom, and which gods are
siblings of one another. There is no need for us to explicitly assert this information as additional facts, since
it can be derived from the parenthood facts. Figure 3(a) shows how to extend the ORM model to derive the
required grandparenthood and siblinghood facts. Here, the derived fact types EgyptianGod is a grandparent of
EgyptianGod and EgyptianGod is a sibling of EgyptianGod have been added, along with their derivation rules, which
are displayed textually using the syntax of FORML (Formal ORM Language) [12]. Graphically, derived
fact types are distinguished in ORM by appended at least one asterisk “*” to their predicate reading(s).

The FORML derivation rule for grandparenthood should be easy to understand, so no further
explanation is provided here. The FORML derivation rule for siblinghood is based on the Oxford
dictionary definition which treats two entities as siblings so long as they have at least one parent in
common. Similar to SQL, FORML uses “<>” for the inequality operator (shown as “” in mathematics).

3

Figure 3 Adding derived associations for grandparenthood and siblinghood in (a) ORM and (b) UML.

By default, derived fact types in ORM are evaluated lazily, so derived facts are computed only on

request (e.g. when querying a derived fact type) rather than on update (when the fact types used to perform
the derivation are updated). This “derived but not stored” choice is indicated in ORM by marking the
derived fact type with just a single asterisk “*”. In contrast, by default LogiQL evaluates derived predicates
eagerly, and stores the derived facts for later use. This “derived and stored” option is indicated in ORM by
marking the derived fact type with a double asterisk “**”, as shown in Figure 3(a).

The Barker ER notation does not support derived relationships, so is ignored for this extended model.
Figure 3(b) adds derived associations for grandparenthood and siblinghood, prepending a slash “/” to the
association role names to indicate their derived status. UML has no way to distinguish between the storage
options for derivation that are supported in ORM. Derivation rules may be specified textually in OCL, but
are omitted in Figure 3(b), since OCL rules are typically unintelligible to nontechnical users. In this case,
the OCL rules for grandparenthood are readable (e.g. self.grandchild = self.child.child), but the OCL rules for
siblinghood are opaque.

The extended model may be captured in an RDB schema by adding views for Parenthood and
Siblinghood, but the SQL code for these views is omitted here. To cater for the derived and stored option,
the views should be materialized.

The schema for the Figure 3 example may be coded in LogiQL as shown below. The right arrow
symbol “->” stands for the material implication operator “” of logic, and is read as “implies”. The left
arrow symbol “<-” stands for the inverse material implication operator “” of logic, and is read as “if”.
Recall that LogiQL is case-sensitive, and each formula must end with a period. The first line declares
EgyptianGod as an entity type whose instances may be referenced by god names that are coded as character
strings. The colon “:” in hasGodName(g:gn) distinguishes hasGodName as a refmode predicate, so this
predicate is injective (mandatory, 1:1).

The second line declares the typing constraints on the isaParentOf predicate. The third line is a
derivation rule to declare the isaChildOf predicate as the inverse of the isaParentOf predicate. The
remaining lines specify the derivation rules for the isaGrandparentOf and isaSiblingOf predicates.

EgyptianGod(g), hasGodName(g:gn) ‐> string(gn).
isaParentOf(g1, g2) ‐> EgyptianGod(g1), EgyptianGod(g2).
isaChildOf(g1, g2) <‐ isaParentOf(g2, g1).
isaGrandparentOf(g1, g2) <‐
 isaParentOf(g1, g3), isaParentOf(g3, g2).
isaSiblingOf(g1, g2) <‐
 isaChildOf(g1, g3), isaChildOf(g2, g3), g1 != g2.

4

Recall that LogiQL uses a comma “,” for the and-operator (“&”) and “!=” for the inequality-operator
(“”), and that variables in the head of LogiQL rules (before “<-“) are implicitly universally quantified, and
variables that occur only in the body of a rule (after “<-“) are implicitly existentially quantified. Hence the
grandparenthood and siblinghood rules are equivalent to the following logical formulae:

g1,g2 [g1 isaGrandparentOf g2  g3(g1 isaParentOf g3 & g3 isaParentOf g2)].
g1,g2 [g1 isaSiblingOf g2  g3(g1 isaChildOf g3 & g2 isaChildOf g3 & g1  g2)].

Since no other rules are provided for the isaGrandparentOf and isaSiblingOf predicates, LogiQL’s
closed world assumption effectively promotes the if-operator “” to an if-and-only-if-operator (“”), so
these rules correspond precisely to the FORML rules shown in Figure 3(a).

To enter the schema in the free, cloud-based REPL tool, use	a	supported	browser	such	as	Chrome,	
Firefox	or	Internet	Explorer	to	access	the	website	https://repl.logicblox.com.	Alternatively,	you	can	
access	https://developer.logicblox.com/playground/,	then	click	the	“Open in new window” link to show a
full screen for entering the code.

Schema code is entered in one or more blocks of one or more lines of code, using the addblock
command to enter each block. After the “/>” prompt, type the letter “a”, and click the addblock option that
then appears. This causes the addblock command (followed by a space) to be added to the code window.
Typing a single quote after the addblock command causes a pair of single quotes to be appended, with your
cursor placed inside those quotes ready for your block of code (see Figure 4).

Figure 4 Invoking the addblock command in the REPL tool.

Now copy the seven lines of schema code provided above to the clipboard (e.g. using Ctrl+C), then
paste it between the quotes (e.g. using Ctrl+V), and then press the Enter key. You are now notified that the
block was successfully added, and a new prompt awaits your next command (see Figure 5). By default, the
REPL tool also appends an automatically generated identifier for the code block. Alternatively, you can
enter each line of code directly, using a separate addblock command for each line.

Figure 5 Adding a block of schema code.

The data in Figure 2(a) may be entered in LogiQL using the following delta rules. A delta rule of the
form +fact inserts that fact. Recall that plain, double quotes (i.e. ",") are needed here, not single quotes or
smart double quotes. Hence it’s best to use a basic text editor such as WordPad or NotePad to enter code
that will later be copied into a LogiQL tool.

+isaParentOf("Ra", "Shu"), +isaParentOf("Ra", "Tefnut").
+isaParentOf("Shu", "Geb"), +isaParentOf("Shu", "Nut").
+isaParentOf("Tefnut", "Geb"), +isaParentOf("Tefnut", "Nut").

5

+isaParentOf("Geb", "Isis"), +isaParentOf("Geb", "Osiris").
+isaParentOf("Geb", "Nephthys"), +isaParentOf("Geb", "Seth").
+isaParentOf("Nut", "Isis"), +isaParentOf("Nut", "Osiris").
+isaParentOf("Nut", "Nephthys"), +isaParentOf("Nut", "Seth").
+isaParentOf("Isis", "Horus"), +isaParentOf("Osiris", "Horus").

There is no need to add delta rules simply to insert instances of the entity type EgyptianGod, because

those facts are implied by facts in which they particpate. For example, the assertion +isaParentOf("Ra",
"Shu") implies the assertions +EgyptianGod("Ra") and +EgyptianGod("Shu"). However, you may add those
facts separately if you wish.
 Delta rules to add or modify data are entered using the exec (for ‘execute’) command rather than the
addblock command. To invoke the exec command in the REPL tool, type “e” and then select exec from the
drop-down list. A space character is automatically appended. Typing a single quote after the exec command
and space causes a pair of single quotes to be appended, with your cursor placed inside those quotes ready
for your delta rules.

Now copy the lines of data code provided above to the clipboard (e.g. using Ctrl+C), then paste it
between the quotes (e.g. using Ctrl+V), and then press the Enter key. A new prompt awaits your next
command (see Figure 6).

Figure 6 Adding the data below the program code.

Now that the data model (schema plus data) is stored, you can use the print command to inspect the

contents of any predicate. For example, to list all the recorded Egyptian gods, type “p” then select print
from the drop-down list, and then type a space followed by “E”, then select EgyptianGod from the drop-
down list and press Enter. Alternatively, type “print EgyptianGod” yourself and press Enter.

Currently, the query result window in REPL tool displays at most six rows at a time, so only six of the
ten god names are displayed, as shown in the top part of Figure 7. Drag the window’s scroll bar down to
see the rest of the result, as shown in the bottom part of Figure 7. By default, the REPL tool prepends a
column listing automatically generated, internal identifiers for the returned entities.

6

Figure 7 Using the print command and the scroll bar to list the extension of a predicate.

Similarly, you can use the print command to print the extension of the isaParentOf, isachildOf,

isaGrandparentOf and isaSiblingOf predicates.
 As discussed in previous articles, to perform a general query, you need to specify a derivation rule to
compute the facts requested by the query. For example, the following query may be used to list the
grandparents of Horus. Here the rule’s head _(gp) uses an anonymous predicate to capture the result
derived from the rule’s body. Since the variable gp is a head variable, it is implicitly universally quantified.
Since the derived isaGrandparentOf predicate has already been defined, the query is short and simple.

 _(gp) <‐ isaGrandparentOf(gp, "Horus").

In LogiQL, queries are executed by appending their code in single quotes to the query command. To
do this in the REPL tool, type “q”, choose “query” from the drop-down list, type a single quote, then copy
and paste the above LogiQL query code between the quotes and press Enter. The relevant query result is
now displayed as shown in Figure 8. By default, the REPL tool prepends a column listing automatically
generated, internal identifiers for the returned entities.

Figure 8 Using a query to list the grandparents of Horus.

The isaGrandparentOf predicate has two arguments, and it is just as easy to query for the second

argument. For example, the following query may be used to list the grandchildren of Shu.

_(gc) <‐ isaGrandparentOf("Shu", gc).

7

Entering this query causes the relevant query result to be displayed as shown in Figure 9. By default,
the REPL tool prepends a column listing automatically generated, internal identifiers for the returned
entities.

Figure 9 Using a query to list the grandchildren of Shu.

The REPL playground has limited screen space available, and after a while online access to the

workspace can time out, so let’s now save the workspace for later use by pressing the Save tab at the top of
the screen. This exports the workspace to a zip file in your computer’s normal download folder (see Figure
10).

Figure 10 Saving your workspace.

 Now exit REPL by closing the REPL window in your browser. Then re-access the	REPL	website	at	
https://repl.logicblox.com,	press	the	Restore	 tab	at	the	top	of	the	screen,	then	select	the	workspace	
zip	file	in	your	download	folder	and	press	Open	to	import	it	as	your	current	workspace	(see	Figure
11).	

Figure 11 Restoring your workspace.

8

 You now have a fresh screen, with your workspace loaded. Now issue the following query to list the
siblings of Isis.

_(s) <‐ isaSiblingOf(s, "Isis").

Entering this query causes the relevant query result to be displayed as shown in Figure 12. As usual,
the REPL tool prepends a column listing automatically generated, internal identifiers for the returned
entities.

Figure 12 Using a query to list the siblings of Isis.

Inclusive-Or Constraints

Table 1 Names and recorded titles of Ra and the Ennead

God Name God Title

Ra
Shu
Tefnut
Geb
Nut
Isis
Osiris
Nephthys
Seth
Horus

Sun God
Air God
Moisture God
Earth God
Sky Goddess
Mother Goddess
God of the dead

God of storms and chaos
Sky God

Now let’s expand our model by including the titles of some of the Egyptian gods, as indicated in Table 1.
Note that each god title applies to only one god. We do not record any title for Nephthys, so for our
purposes it is optional for a god to have a title. Nevertheless, as indicated in our parenthood graph in Figure
1, it is mandatory for each of our Egyptians gods to play at least one of the roles in the parenthood
relationship. This is known in ORM as an inclusive-or constraint, since each god must play the role of
being a parent, or having a parent, or both.

Figure 13(a) models this expanded example as a populated ORM schema. The two uniqueness
constraint bars on the roles of the EgyptianGod has GodTitle fact type indicate that the relationship is one-to-
one. The circled dot connected to the junction of the roles in the parenthood fact type depicts the inclusive-
or constraint. The NORMA tool [4] verbalizes the uniqueness and inclusive-or constraints as follows:

Each EgyptianGod has at most one GodTitle.
For each GodTitle, at most one EgyptianGod has that GodTitle.

Each EgyptianGod is a parent of some EgyptianGod
 or is a child of some EgyptianGod.

9

Figure 13(b) models the expanded example in Barker ER notation. The “o” prepended to the god title
attribute indicates its optionality. The Barker ER graphical notation is not able to capture the uniqueness
constraint on the god title attribute (i.e. each title applies to only one god) or the inclusive-or constraint.

Figure 13(c) models the expanded example in UML. Here the [0..1] multiplicity constraint on the title
attribute ensures that each Egyptian god has at most one title. The UML graphical notation is not able to
capture the uniqueness constraint on the god title attribute or the inclusive-or constraint. However, these
constraints could be specified textually in OCL.

Figure 13(d) displays the relational schema diagram generated by NORMA from the ORM schema.
Here the optionality of the godTitle attribute is indicated by non-bold type, and the uniqueness of non-null
entries for this attribute is indicated by the U1 annotation. The two arrows depict foreign key constraints.
The inclusive-or constraint is not captured graphically, but can be coded textually in SQL.

Figure 13 Expanded data model in (a) ORM, (b) Barker ER, (c) UML, and (d) relational database notation.

 The additional aspects of the expanded schema may be coded in LogiQL as follows. The first line uses
the square bracket notation to declare the functional nature of the godTitleOf predicate (so each god has at
most one title), as well as the types of its arguments. The second line declares the inverse functional nature
of the godTitleOf predicate (so each title applies to at most one god). The third line declares the inclusive-
or constraint, using an underscore “_” for anonymous variables and a semicolon “;” for the inclusive-or
operator (each god is a parent of something or has something as a parent).

godTitleOf[g] = gt ‐> EgyptianGod(g), string(gt).
godTitleOf[g1] = gt , godTitleOf[g2] = gt ‐> g1 = g2.
EgyptianGod(g) ‐> isaParentOf(g, _); isaParentOf(_, g).

 Use the addblock command to add this code to the workspace in the usual way, as shown in Figure 14.

10

Figure 14 Adding the extra block of code to the workspace.

The additional god title data may be coded in LogiQL using the following delta rules.

+godTitleOf["Ra"] = "Sun God", +godTitleOf["Shu"] = "Air God".
+godTitleOf["Tefnut"] = "Moisture God", +godTitleOf["Geb"] = "Earth God".
+godTitleOf["Nut"] = "Sky Goddess", +godTitleOf["Isis"] = "Mother Goddess".
+godTitleOf["Osiris"] = "God of the dead", +godTitleOf["Seth"] = "God of storms and chaos".
+godTitleOf["Horus"] = "Sky God".

Now use the exec command in the usual way to enter the delta rules (see Figure 15).

Figure 15 Adding the god title facts to the workspace.

Using a comma “,” for the logical “and” operator, the following query may now be used to list the

name and title of the grandparents of Osiris.

_(g, gt) <‐ isaGrandparentOf(g, "Osiris"), godTitleOf[g] = gt.

Entering this query causes the relevant result to be displayed as shown in Figure 16. As usual, the

REPL tool prepends a column listing automatically generated, internal identifiers for the returned entities.

Figure 16 Querying the expanded workspace to list the names and titles of the grandparents of Osiris.

Conclusion

The current article discussed derivation rules in a little more detail, explained how to save and restore
workspaces, and showed how to declare inclusive-or constraints in LogiQL. Future articles in this series
will examine how LogiQL can be used to specify business constraints and rules of a more advanced nature.
An introductory online tutorial for LogiQL and the REPL tool is available at the website
https://developer.logicblox.com/content/docs4/tutorial/repl/section/split.html. Further coverage of LogiQL
may be found in [11].

References

1. Abiteboul, S., Hull, R. & Vianu, V. 1995, Foundations of Databases, Addison-Wesley, Reading, MA.
2. Aref, M., Cate, B., Green T., Kimefeld, B., Olteanu, D., Pasalic, E., Veldhuizen, T. & Washburn, G.

2015, ‘Design and Implementation of the LogicBlox System’, Proc. 2015 ACM SIGMOD

11

International Conference on Management of Data, ACM, New York.
http://dx.doi.org/10.1145/2723372.2742796.

3. Barker, R. 1990, CASE*Method: Entity Relationship Modelling, Addison-Wesley, Wokingham.
4. Curland, M. & Halpin, T. 2010, ‘The NORMA Software Tool for ORM 2’, P. Soffer & E. Proper

(Eds.): CAiSE Forum 2010, LNBIP 72, pp. 190-204, Springer-Verlag Berlin Heidelberg 2010.
5. Halpin, T. 2014, ‘Logical Data Modeling: Part 1’, Business Rules Journal, Vol. 15, No. 5 (May, 2014),

URL: http://www.BRCommunity.com/a2014/b760.html.
6. Halpin, T. 2014, ‘Logical Data Modeling: Part 2’, Business Rules Journal, Vol. 15, No. 10 (Oct.,

2014), URL: http://www.BRCommunity.com/a2014/b780.html.
7. Halpin, T. 2015, ‘Logical Data Modeling: Part 3’, Business Rules Journal, Vol. 16, No. 1 (Jan., 2015),

URL: http://www.BRCommunity.com/a2015/b795.html.
8. Halpin, T. 2015, ‘Logical Data Modeling: Part 4’, Business Rules Journal, Vol. 16, No. 7 (July, 2015),

URL: http://www.BRCommunity.com/a2015/b820.html.
9. Halpin, T. 2015, Object-Role Modeling Fundamentals, Technics Publications, New Jersey.
10. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, 2nd edition, Morgan

Kaufmann, San Francisco.
11. Halpin, T. & Rugaber, S. 2014, LogiQL: A Query language for Smart Databases, CRC Press, Boca

Raton. http://www.crcpress.com/product/isbn/9781482244939#.
12. Halpin, T. & Wijbenga, J. 2010, ‘FORML 2’, Enterprise, Business-Process and Information Systems

Modeling, eds. I. Bider et al., LNBIP 50, Springer-Verlag, Berlin Heidelberg, pp. 247–260.
13. Huang, S., Green, T. & Loo, B. 2011, ‘Datalog and emerging applications: an interactive tutorial’,

Proc. 2011 ACM SIGMOD International Conference on Management of Data, ACM, New York.
http://dl.acm.org/citation.cfm?id=1989456.

14. Object Management Group 2013, OMG Unified Modeling Language (OMG UML), version 2.5 RTF
Beta 2. Available online at: http://www.omg.org/spec/UML/2.5/Beta2/PDF/.

15. OMG, 2012, OMG Object Constraint Language (OCL), version 2.3.1. Retrieved from
http://www.omg.org/spec/OCL/2.3.1/.

