
1

Logical Data Modeling: Part 3

Terry Halpin
INTI International University

This is the third article in a series on logic-based approaches to data modeling. The first article [4] provided
a brief overview of deductive databases, and illustrated how simple data models may be declared and
queried in LogiQL [9], a leading edge example of a deductive database system based on extended datalog
[1]. The second article [5] discussed how to declare inverse predicates, simple mandatory role constraints
and internal uniqueness constraints on binary fact types in LogiQL. The current article explains how to
declare n-ary predicates and apply simple mandatory role constraints and internal uniqueness constraints to
them. As usual, the LogiQL code examples are implemented using the free, cloud-based REPL (Read-Eval-
Print-Loop) tool for LogiQL that is accessible at https://developer.logicblox.com/playground/.

n-ary Fact Types with a Spanning Uniqueness Constraint

Figure 1 depicts a simple data model for recording the sports in which various countries competed in
various games of the summer Olympics of the modern era. Basic background on the graphical notations
used may be found in the previous articles. Each summer Olympics is primarily identified by its Olympiad
number (rendered here for convenience in Hindu-Arabic numerals rather than the usual Latin numerals),
but may also be referenced by the year for which it is assigned (whether or not it is actually held—the
games for Olympiads VI, XII and XIII were cancelled because of world wars). For example, the first
summer Olympic Games (Olympiad Number 1) of the modern era was assigned (and actually held in) the
year 1896, and the most recently held summer Olympic Games (Olympiad Number XXX) was assigned the
year 2012. Figure 1(a) depicts the conceptual schema in Object-Role Modeling (ORM) [6] notation,
together with a very small sample data population. For an extensive coverage of the relevant data, see
http://en.wikipedia.org/wiki/Summer_Olympic_Games.

Figure 1 Sample data model in (a) ORM, (b) UML, and (c) relational database notation.

The fact type Country competed in Sport in SummerOlympics is a ternary relationship (3-roles) with predicate

reading “… competed in .. in …”, where each ellipsis “…” is a placeholder for an object. The bar spanning the
three role boxes is a spanning uniqueness constraint, indicating that each triple in the fact table appears on

2

at most one row, ensuring that each population is a set (not a bag) of rows, as is the case for all asserted fact
types in ORM. Since no stronger (shorter) uniqueness constraint applies, the fact type is a many-to-many-
to-many relationship, as illustrated by the sample population, where single objects and pairs of objects may
appear on more than one row. The NORMA tool [3] for ORM automatically verbalizes the spanning
uniqueness constraints as follows:

It is possible that for some Country and Sport, that Country competed in that Sport in more than one SummerOlympics
 and that for some Country and SummerOlympics, that Country competed in more than one Sport in that SummerOlympics
 and that for some Sport and SummerOlympics, more than one Country competed in that Sport in that SummerOlympics.
In each population of Country competed in Sport in SummerOlympics,
 each Country, Sport, SummerOlympics combination occurs at most once.

The fact type SummerOlympics is assigned Year is a binary fact type (2 roles). The solid dot on the role

connection to SummerOlympics indicates that is role is mandatory for each summer Olympics. Each role
has a simple uniqueness constraint, depicted as a bar over the role, so each entry in the fact column for the
role occurs on at most one row, ensuring that the fact type is a one-to-one relationship. Collectively, the
mandatory role and uniqueness constraints verbalize as follows:

Each SummerOlympics is assigned exactly one Year.
For each Year, at most one SummerOlympics is assigned that Year.

Figure 1(b) depicts the same schema as a class diagram in the Unified Modeling Language (UML)

[10], but without the sample data. The {id} annotations indicate the identifying attributes for the classes,
but UML has no graphical notation for secondary uniqueness constraints, so the uniqueness constraint that
years are also identifying for summer Olympics is lost, although one could specify this constraint textually
in the Object Constraint Language (OCL) [11]. The optional, many-to-many-to-many nature of the ternary
relationship is captured by the “*” (zero or more) multiplicity markers on the association ends.

The Barker notation [2] for Entity Relationship (ER) modeling does not support n-ary relationships, so
is basically ignored in this article. However, the example can be modeled indirectly in Barker ER notation
by replacing the ternary relationship by a Competing entity type identified by three mandatory, many-to-
one binary relationships, one to Country, one to Sport and one to SummerOlympics. As with UML, Barker
ER cannot capture the uniqueness constraint on the yearAssigned attribute graphically.

Figure 1(c) depicts the same data model as a relational database schema, again without the sample
data. There are two relational tables, with their candidate keys underlined. If a table has more than one
candidate key, the primary key is doubly underlined. The arrowed line from Competed.olympiadNr to
SummerOlympics.olympiadNr denotes a foreign key reference.

The schema for the example may be coded in LogiQL as shown below. The first three lines declare the
reference schemes for the entity types Country, Sport and SummerOlympics, using string datatypes for the
country codes and sport names, and integers for Olympiad numbers. The right arrow symbol “->” stands
for the material implication operator “” of logic, and is read as “implies”. The colon “:” between the
predicate arguments indicates a refmode predicate, so these predicates are injective (mandatory, 1:1).
Recall that LogiQL is case-sensitive, and each formula must end with a period. For simplicity, years are
coded as integers rather than treating them as entities with a refmode predicate.

Country(c), hasCountryCode(c:cc) ‐> string(cc).
Sport(s), hasSportName(s:sn) ‐> string(sn).
SummerOlympics(o), hasOlympiadNr(o:on) ‐> int(on).
competedInSportInSummerOlympics(c, s, o) ‐> Country(c), Sport(s), SummerOlympics(o).
yrOfSummerOlympics[o] = yr ‐> SummerOlympics(o), int(yr).
yrOfSummerOlympics[o1] = yr, yrOfSummerOlympics[o2] = yr ‐> o1 = o2.
SummerOlympics(o) ‐> yrOfSummerOlympics[o] = _.

The fourth line declares the n-ary predicate and constrains its types. Since this predicate has a

spanning uniqueness constraint, it is written in prefix notation with its arguments in parentheses. Since all

3

predicates in LogiQL are set-based, the spanning uniqueness constraint is implied, so no code is required to
enforce it.

The fifth and sixth lines declare the predicate for the fact type SummerOlympics is assigned Year, and
constrain it to be 1:1. As discussed in the previous article [5], the square bracket notation in line 5 signifies
that the predicate is functional (so each summer Olympics is assigned only one year), and line six captures
the other uniqueness constraint (so each year is for at most one summer Olympics).

The seventh line captures the mandatory role constraint that each summer Olympics country is
assigned at least one year. Here the underscore “_” denotes the anonymous variable, read as “something”.
The individual variable o is implicitly universal quantified, so this formula may be read informally as
follows: Given any individual thing o, if o is a summer Olympics then its year equals something (and hence
must exist).

To enter the schema in the free, cloud-based REPL tool, use	a	supported	browser	such	as	Chrome	
or	Firefox	to	access	the	website	(https://developer.logicblox.com/playground/),	 then	click	the	“Open in
new window” link to show a full screen for entering the code. Schema code is entered in one or more
blocks of one or more lines of code, using the addblock command to enter each block. After the “/>”
prompt, type the letter “a”. A drop-down list of available commands starting with the letter “a” now
appears. Click the addblock option to have the addblock command(followed by a space) added to the code
window. Typing a single quote after the addblock command causes a pair of single quotes to be appended,
with your cursor placed inside those quotes ready for your block of code (see Figure 2).

Figure 2 Invoking the addblock command in the REPL tool.

Now copy the seven lines of schema code provided above in this article to the clipboard (e.g. using
Ctrl+C), then paste it between the quotes (e.g. using Ctrl+V), and then press the Enter key. You are now
notified that the block was successfully added, and a new prompt awaits your next command (see Figure 3).
By default, the REPL tool also appends an automatically generated identifier for the code block.
Alternatively, you can enter each line of code directly, using a separate addblock command for each line.

Figure 3 Adding a block of schema code.

4

The data in Figure 1(a) may be entered in LogiQL using the following delta rules. A delta rule of the
form +fact inserts that fact. Recall that plain, double quotes (i.e. ",") are needed here, not single quotes or
smart double quotes. Hence it’s best to use a basic text editor such as WordPad or NotePad to enter code
that will later be copied into a LogiQL tool.

+competedInSportInSummerOlympics("AU", "baseball", 28).
+competedInSportInSummerOlympics("AU", "cricket", 1).
+competedInSportInSummerOlympics("US", "baseball", 28).
+competedInSportInSummerOlympics("US", "baseball", 29).
+competedInSportInSummerOlympics("US", "swimming", 28).
+yrOfSummerOlympics[1] = 1896.
+yrOfSummerOlympics[28] = 2004.
+yrOfSummerOlympics[29] = 2008.
+yrOfSummerOlympics[30] = 2012.

There is no need to add delta rules simply to insert instances of the entity types, because those facts are

implied by the constraints on the fact types. For example, the assertion
+competedInSportInSummerOlympics("AU", "baseball", 28) implies the assertions +Country("AU"),
+Sport("baseball"), and +SummerOlympics(28). However, you may add those facts separately if you wish.
 Delta rules to add or modify data are entered using the exec (for ‘execute’) command rather than the
addblock command. To invoke the exec command in the REPL tool, type “e” and then select exec from the
drop-down list. A space character is automatically appended. Typing a single quote after the exec command
and space causes a pair of single quotes to be appended, with your cursor placed inside those quotes ready
for your delta rules.

Now copy the nine lines of data code provided above to the clipboard (e.g. using Ctrl+C), then paste it
between the quotes (e.g. using Ctrl+V), and then press the Enter key. A new prompt awaits your next
command. Both schema and data have now been entered (see Figure 4).

Figure 4 Adding the data below the program code.

Now that the data model (schema plus data) is stored, you can use the print command to inspect the

contents of any predicate. For example, to list all the recorded sports, type “p” then select print from the
drop-down list, and then type a space followed by “S”, then select Sport from the drop-down list and press
Enter. Alternatively, type “print Sport” yourself and press Enter. Figure 5 shows the result. By default, the
REPL tool prepends a column listing automatically generated, internal identifiers for the returned entities.

Figure 5 Using the print command to list the extension of a predicate.

5

 As discussed in previous articles, to perform a general query, you need to specify a derivation rule to
compute the facts requested by the query. If you simply want to issue a query to derive some facts without
needing to reference them later, there is no need to name the derived predicate, so we just use an
anonymous predicate instead to capture the query result. For example, using a comma “,” for the logical
“and” operator and an exclamation mark “!” for the logical not operator, the following query may be used
to derive the Olympiad number and year of those summer Olympics for which no competing country data
has yet been entered. Here the rule’s head _(o, yr) uses an anonymous predicate to capture the result
derived from the rule’s body. Since the variables o and yr are head variables, they are implicitly universally
quantified. Anonymous variables for country and sport are used in the negated condition to check that there
does not exist any recorded fact that a country competed in a sport for that Olympics.

 (o, yr) <‐ yrOfSummerOlympics[o] = yr, !competedInSportInSummerOlympics(, _, o).

In LogiQL, queries are executed by appending their code in single quotes to the query command. To
do this in the REPL tool, type “q”, choose “query” from the drop-down list, type a single quote, then copy
and paste the above LogiQL query code between the quotes and press Enter. The relevant query result is
now displayed as shown in Figure 6. By default, the REPL tool also prepends a column listing
automatically generated, internal identifiers for the returned entities.

Figure 6 Using the query command to execute a sample query.

n-ary Fact Types with Internal Uniqueness Constraints spanning n-1 Roles

Figure 7 Another sample data model in (a) ORM, (b) UML, and (c) relational database notation.

As indicated earlier, predicates in LogiQL are by default assumed to have a spanning uniqueness constraint.
In practice, most n-ary predicates are constrained by one or more uniqueness constraints each of which
spans n-1 roles. ORM requires asserted fact types to be atomic, so uniqueness constraints spanning fewer
than n-1 roles are not allowed. For example, a ternary fact type with a single role uniqueness constraint is
not atomic as it can be split into a conjunction of shorter fact types.
 Figure 7 depicts a simple data model for recording the ranks of various countries in various sports,
based on their collective medal tally over all the modern summer Olympics. The ORM data model in

6

Figure 7(a) includes a small, sample data population. For an extensive coverage of the relevant data, see
http://en.wikipedia.org/wiki/Summer_Olympic_Games. These Olympic sport rankings allow ties. For
example, in Figure 7(a) both North Korea (country code = KP) and the Netherlands (country code = NE)
are ranked 22nd in gymnastics. The ORM schema comprises a ternary fact type with a uniqueness constraint
spanning just its first two roles, so no duplicate (country, sport) pairs are allowed in its fact table. This
constraint verbalizes thus: For each Country and Sport, that Country in that Sport has at most one Rank.

Figure 7(b) shows one way to model this example in UML, using an association to capture which
countries competed in which sports, and forming a class from this association to which the rank is attached
as an attribute. Figure 7(c) models the example in relational database notation, with the primary key
underlined.

Like ORM, LogiQL models all facts using predicates, not attributes, so this example is modeled using
a ternary predicate to record the rank of a country in a sport. Since Country and Sport have already been
declared there is no need to declare them again. Again for simplicity, ranks are typically modeled as
integers. Since rank is a function of the country and sport combination, this is an example of a functional,
n-ary fact type. Hence the square bracket notation is used to declare this functionality, as shown in the
following LogiQL code.

rankOfCountryInSport[c, s] = r ‐> Country(c), Sport(s), int(r).

To implement this in the REPL tool, use the add block command and copy the above code in the usual

way, as shown in Figure 8 .

Figure 8 Adding the schema for Figure 7 in the REPL tool.

The sample data in Figure 7 may be added using the following delta rules:

+rankOfCountryInSport["AU", "baseball"] = 5.
+rankOfCountryInSport["AU", "swimming"] = 2.
+rankOfCountryInSport["CU", "baseball"] = 1.
+rankOfCountryInSport["KP", "gymnastics"] = 22.
+rankOfCountryInSport["NE", "gymnastics"] = 22.
+rankOfCountryInSport["US", "baseball"] = 2.
+rankOfCountryInSport["US", "gymnastics"] = 2.
+rankOfCountryInSport["US", "swimming"] = 1.

To implement this in the REPL tool, use the exec command and copy the above code in the usual way,

as shown in Figure 9.

Figure 9 Adding the data for Figure 7 in the REPL tool.

7

 You can now print and query the model in the usual way. For example, the following query lists each
country and sport where that country is ranked second in that sport.

_(c, s) <‐ rankOfCountryInSport[c, s] = 2.

For the limited data provided, this query yields the following result. Here, artificial ids are prepended

by default for both countries and sports, since both are modeled as entities.

Figure 10 Using the query command to execute a sample query.

Overlapping Uniqueness Constraints and Mandatory Role Constraints on n-ary Fact Types

Now suppose that the rating system is changed so that no ties are allowed. For example, suppose some new
criterion is added that enables the Netherlands to be ranked in gymnastics just ahead (rank 22) of North
Korea (rank 23), as shown in the ORM model population in Figure 11(a). To ensure that no ties are
allowed, an additional uniqueness constraint is applied on the pair of roles hosted by Sport and Rank, so no
duplicate (sport, rank) pairs are allowed in its fact table. This constraint verbalizes as follows: For each Sport
and Rank, at most one Country in that Sport has that Rank.

Figure 11 A modified example where no ties are allowed, modeled in (a) ORM, and (b) relational database notation.

The UML class diagram in Figure 7(b) modeled rank as an attribute, so can’t be extended with a

graphical constraint to enforce the no-ties constraint. However, this constraint can be captured graphically
in UML by modeling Rank as a class and using a ternary association for Ranking, as shown in Figure
11(b). The two uniqueness constraints are now captured by the 0..1 multiplicity constraints.

The relational database model shown in Figure 11(c) captures the uniqueness constraint over (country,
sport) pairs as a primary key constraint (shown here with a double-underline). The uniqueness constraint
over (sport, rank) pairs is captured by a secondary key constraint (shown here with single-underline).

The easiest way to update North Korea’s rank in gymnastics from 22 to 23 is to execute the following
upsert rule. The circumflex “^” modifier for upserts is used instead of the “+” and “-” modifiers which are
used respectively for insertion and deletion. As the name “upsert” suggests, this may be used to either

8

update or insert. If the key (in square brackets) of the functional fact already exists, its functionally
determined value is updated, as in this example. Otherwise the fact is simple inserted.

^rankOfCountryInSport["KP", "gymnastics"] = 23.

A longer but equivalent way to perform the update is to first delete the existing fact and then insert the new
fact that replaces it, as shown below:

‐rankOfCountryInSport["KP", "gymnastics"] = 22.
+rankOfCountryInSport["KP", "gymnastics"] = 23.

Note that the upsert shortcut may be used only with functional predicates. To execute this update in the
REPL tool, invoke the exec command and enter the command in the usual way (see Figure 12).

Figure 12 Executing an update in the REPL tool.

In LogiQL, the uniqueness constraint over (sport, rank) pairs may be declared as follows. This says

that if any countries c1 and c2 in the same sport s have the same rank r, then c1 and c2 must be the same
country.

 rankOfCountryInSport[c1, s] = r, rankOfCountryInSport[c2, s] = r ‐> c1 = c2.

Use the addblock command in the usual way to declare this constraint in the REPL tool (see Figure 13).

Figure 13 Adding the no-ties constraint in the REPL tool.

Now suppose that we extend the model by requiring each recorded country to have a name and a sport

rating. Figure 14(a) shows how to do this in ORM by adding the 1:1 fact type Country has CountryName, and
applying mandatory role constraints to the roles hosted by Country. Modeling and coding of the country
name fact type was discussed in the previous article [10]. The mandatory role constraint on Country’s role
in the ternary fact type verbalizes as follows: Each Country in some Sport has some Rank.

Figure 14 Extending the previous model in (a) ORM, and (b) relational database notation.

9

Although multiplicity constraints in UML work well with binary associations, they often have limited
expressive power when n-ary associations are used. For example, there is no way to express the mandatory
role constraint on the ternary association as a graphical constraint in UML. So we ignore UML for this
extended example. For further details about multiplicities on n-aries in UML, see [10, p. 362].

Figure 14(a) models the example in relational database notation, using dashed-arrows to depict subset
constraints. The upward arrow may be declared as a foreign key constraint, but the downward arrow needs
separate code (e.g. using triggers) to enforce the mandatory role constraint under discussion.

We now discuss how to code the extensions to the model in LogiQL. The functional, country name
fact type may be declared as follows.

countryNameOf[c] = cn ‐> Country(c), string(cn).

and entered as a block in the usual way in REPL (see Figure 15).

Figure 15 Adding the country name fact type in the REPL tool.

 We now populate this fact type with the extra data in Figure 14 in the usual way by executing five fact
insertions (see Figure 16).

Figure 16 Adding the names of countries in the REPL tool.

The inverse functional nature of the country name predicate is declared by the first line of code below.

The next two lines of code declare the mandatory role constraints on Country, with the final line enforcing
the mandatory role constraint on the ternary, ensuring that each country has some rank in some sport.

countryNameOf[c1] = cn, countryNameOf[c2] = cn ‐> c1 = c2.
Country(c) ‐> countryNameOf[c] = _.
Country(c) ‐> rankOfCountryInSport[c, _] = _.

This block of code may now be added in REPL tool in the usual way (see Figure 17).

Figure 17 Adding the country name fact type in the REPL tool.

10

That completes the entry of the model extensions. The model may now be queried in the usual way.
For example, the following query will return for each recorded sport, the rank and name of those countries
that are recorded to rank first or second in that sport.

_(s, r, cn) <‐ rankOfCountryInSport[c, s] = r, r <= 2, countryNameOf[c] = cn.

Running this query in REPL tool yields the result shown in Figure 18. As usual, internal identifiers are
prepended for the returned entities (in this case, sports—recall that we chose to code ranks and country
names in LogiQL as data values rather than entities).

Figure 18 Using the query command to execute a sample query on the extended data model.

Conclusion

The current article discussed how to declare n-ary predicates and apply simple mandatory role constraints
and internal uniqueness constraints to them. Future articles in this series will examine how LogiQL can be
used to specify business constraints and rules of a more advanced nature. For readers interested in a fuller
treatment of the language, a new book [7] has just been published which provides an in-depth coverage of
LogiQL.

References

1. Abiteboul, S., Hull, R. & Vianu, V. 1995, Foundations of Databases, Addison-Wesley, Reading, MA.
2. Barker, R. 1990, CASE*Method: Entity Relationship Modelling, Addison-Wesley, Wokingham.
3. Curland, M. & Halpin, T. 2010, ‘The NORMA Software Tool for ORM 2’, P. Soffer & E. Proper

(Eds.): CAiSE Forum 2010, LNBIP 72, pp. 190-204, Springer-Verlag Berlin Heidelberg 2010.
4. Halpin, T. 2014, ‘Logical Data Modeling: Part 1’, Business Rules Journal, Vol. 15, No. 5 (May, 2014),

URL: http://www.BRCommunity.com/a2014/b760.html.
5. Halpin, T. 2014, ‘Logical Data Modeling: Part 2’, Business Rules Journal, Vol. 15, No. 10 (Oct.,

2014), URL: http://www.BRCommunity.com/a2014/b780.html.
6. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, 2nd edition, Morgan

Kaufmann, San Francisco.
7. Halpin, T. & Rugaber, S. 2014, LogiQL: A Query language for Smart Databases, CRC Press, Boca

Raton. http://www.crcpress.com/product/isbn/9781482244939#.
8. Halpin, T. & Wijbenga, J. 2010, ‘FORML 2’, Enterprise, Business-Process and Information Systems

Modeling, eds. I. Bider et al., LNBIP 50, Springer-Verlag, Berlin Heidelberg, pp. 247–260.
9. Huang, S., Green, T. & Loo, B. 2011, ‘Datalog and emerging applications: an interactive tutorial’,

Proc. 2011 ACM SIGMOD International Conference on Management of Data, ACM, New York.
http://dl.acm.org/citation.cfm?id=1989456.

10. Object Management Group 2013, OMG Unified Modeling Language (OMG UML), version 2.5 RTF
Beta 2. Available online at: http://www.omg.org/spec/UML/2.5/Beta2/PDF/.

11. OMG, 2012, OMG Object Constraint Language (OCL), version 2.3.1. Retrieved from
http://www.omg.org/spec/OCL/2.3.1/.

