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This is the thirteenth article in a series on logic-based approaches to data modeling. The first article [5] briefly 

overviewed deductive databases, showing how simple data models with asserted and derived facts may be 

declared and queried in LogiQL [2, 20, 22], a leading edge deductive database language based on extended 

datalog [1]. The second article [6] discussed how to declare inverse predicates, simple mandatory role 

constraints and internal uniqueness constraints on binary fact types. The third article [7] explained how to 

declare n-ary predicates and apply simple mandatory role constraints and internal uniqueness constraints to 

them. The fourth article [8] discussed external uniqueness constraints. The fifth article [9] covered derivation 

rules in some more detail, and inclusive-or constraints. The sixth article [10] discussed simple set-comparison 

constraints (i.e. subset, exclusion, and equality constraints), and exclusive-or constraints. The seventh article 

[11] covered subset constraints between compound role sequences, including cases involving join paths. The 

eighth article [12] discussed exclusion and equality constraints between compound role sequences. The ninth 

article [13] explained how to declare basic subtyping. The tenth article [14] discussed how to declare 

relationships to be irreflexive (using a ring constraint) and/or symmetric (using a ring constraint or a 

derivation rule). The eleventh article [15] showed how to constrain a relationship to be asymmetric and/or 

intransitive. The twelfth article [16] discussed recursive derivation rules, and how to constrain ring 

relationships to be acyclic and/or strongly intransitive. The current article shows how to declare internal and 

external frequency constraints. The LogiQL code examples are implemented using the free cloud-based 

REPL (Read-Eval-Print-Loop) tool for LogiQL accessible at https://developer.logicblox.com/playground/. 

 

 

A Parenthood Chart from Egyptian Mythology 

 

Figure 1 pictures the nine Egyptian gods collectively known as the Great Ennead of Heliopolis. Each god is 

identified by its name, and is a parent of zero or more gods in the same Ennead. A downwards arrow depicts 

the parent to child relationship. This example was discussed in the previous two articles [15, 16] to illustrate 

asymmetric, intransitive, acyclic, and strongly intransitive ring constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Parenthood relationships of the Great Ennead of Heliopolis. 
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Figure 2(a) provides a simplified data model for this example using a populated Object-Role Modeling 

(ORM) [17, 18, 19] diagram, with the parenthood relationship constrained to be acyclic (which implies 

asymmetry) and strongly intransitive (which implies intransitivity). The example is schematized in Figure 

2(b) as an Entity Relationship diagram in Barker notation (Barker ER) [3], in Figure 2(c) as a class diagram 

in the Unified Modeling Language (UML) [23], and in Figure 2(d) as a relational database (RDB) schema. 

For detailed discussion of these schemas see the previous two articles [15, 16]. The UML, Barker ER, and 

RDB schemas have no graphical way to depict ORM ring constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Simplified data model for Figure 1 in (a) ORM, (b) Barker ER, (c) UML, and (d) RDB notation. 

A complete data model for this example requires an internal frequency constraint. The next section 

shows how to declare internal frequency constraints in ORM and LogiQL, and the section after that discusses 

how to declare external frequency constraints. 

 

 

Internal Frequency Constraints 

 

Looking back at Figure 1 it’s easy to see that Atum-Ra has no parent, Shu and Tefnut each have exactly one 

parent, and the other gods each have two parents. In other words, each Egyptian god in the Ennead has at 

most two parents. Since only whole instances are allowed, here “at most 2” means “0, 1, or 2”. The 0 case is 

captured by declaring the child role in the parenthood fact type to be optional for an Egyptian god, as indicated 

by the lack of a mandatory role constraint on the child role. Atum-Ra has no parents (i.e. 0 parents) so does 

not appear in the fact column for the child role in Figure 2(a).  

For each population of the parenthood fact type, those Egyptian gods who appear in the fact column for 

the child role must occur there once or twice (i.e. 1 or 2 times). This restriction is specified in ORM using a 

simple internal frequency constraint. In ORM, a simple internal frequency constraint applies to a single fact 

role, and restricts the frequency or number of times an instance in any specific population of that role may 

occur there. In our parenthood case, the minimum frequency is 1 and the maximum frequency is 2, as 

illustrated by the fact population in Figure 2(a). A simple frequency constraint applies only to instances that 

do play the role, so the lowest possible minimum frequency is 1 (not zero). By treating mandatory role 

constraints and frequency constraints as separate and orthogonal issues, ORM enables more efficent 

implementations of those constraints as well as declaration of constraint cases that couldn’t be captured if 

these constraints were combined into a single constraint category such as multiplicity constraints in UML. 
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Figure 3 Adding a constraint that an Egyptian god has at most two parents in (a) ORM, (b) Barker ER, and (c) UML. 

 

Using the NORMA tool for ORM, entering minimum and maximum frequencies of 1 and 2 respectively 

for the child role causes the internal frequency constraint to be displayed as the numeric restriction “≤ 2” (for 

“at most 2”) attached by a dotted line to the role being constrained, as illustrated in Figure 3(a). The NORMA 

tool for ORM verbalizes this constraint as “Each EqyptianGod is a child of at most two instances of EqyptianGod”. This 

is equivalent to the longer formulation “Each God1 in the population of “God1 is a parent of God2” occurs there at least 

1 and at most 2 times.”. Such longer verbalizations are used when the minimum frequency is above 1. 

Figure 3(b) shows how to depict the ORM frequency constraint in the Barker ER notation, where it is 

known as a cardinality constraint. Here the “≤ 2” restriction appears at the parent role end of the parenthood 

relationship rather than the child role. This differs from ORM’s convention where attaching a constraint to a 

role constrains the population of that same role. The optionality of the child role is shown by using a dashed 

line for that end of the relationship. 

The UML class diagram in Figure 3(c) depicts the optionality of the child role as well as the ORM 

frequency constraint using a multiplicity constraint. Unlike both ORM and Barker ER, UML has no constraint 

notation to simply declare whether a role is optional or mandatory, so uses a multiplicity constraint of “0..2” 

(i.e. 0, 1, or 2) to indicate that each Egyptian god is a child of at most 2 parents. Like Barker ER, UML 

displays the constraint on the parent role rather than the child role. 

 Figure 3(d) depicts the example in relational database notation. Unlike ORM, Barker ER, and UML, 

this RDB notation has no graphic way to depict the frequency constraint. 

As discussed in the previous two articles [15, 16], the ORM schema in Figure 3(a) minus the frequency 

constraint may be coded in LogiQL as shown below. The acyclic and strong intransitivity constraints on the 

parenthood predicate are enforced by first recursively deriving the ancestorhood predicate then declaring it 

to be irreflexive and ensuring that no Egyptian god is a parent of a descendant of one of its children. 
 

EgyptianGod(g), hasGodName(g:gn)  ->  string(gn). 
isaParentOf(g1, g2)  ->  EgyptianGod(g1), EgyptianGod(g2). 
isaChildOf(g1, g2)  <-  isaParentOf(g2, g1). 
isaParentOf(g1, g2) -> !isaParentOf(g2, g1).  // asymmetric 
isaParentOf(g1, g2), isaParentOf(g2, g3) ->  !isaParentOf(g1, g3).  // intransitive 
isanAncestorOf(g1, g2)  <-   

isaParentOf(g1, g2) ;  
isaParentOf(g1, g3), isanAncestorOf(g3, g2). 

elementid:77aa5379-8f23-420b-92cd-744154aa7447
elementid:77aa5379-8f23-420b-92cd-744154aa7447
elementid:2339e3ae-b9a0-486a-b730-dfa95ff8e657
elementid:77aa5379-8f23-420b-92cd-744154aa7447
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!isanAncestorOf(g, g). // No Egyptian God is an ancestor of itself 
// No EgyptianGod is a parent of a descendant of one of its children 
isaParentOf(g1, g2), isanAncestorOf(g2, g3)  ->  !isaParentOf(g1, g3). 
 
To implement the “≤ 2” frequency constraint, we need to count the number of times each Egyptian god 

plays the child role and ensure that this number is 0, 1 or 2. In LogiQL, this is done using the count function, 

which is one of several aggregate functions (e.g. count, total, min, max) that may be applied to a collection 

of facts to return a single number. For counting, LogiQL uses a special syntax “agg<<n = 

count()>>condition”, meaning “n is the count of all the facts satisfying condition”. For our example, we can 

derive the number of parents of each Egyptian god using the following LogiQL derivation rule. Recall that 

an underscore “_” denotes the anonymous variable (read as “something”), so the following rule says that the 

number of parents of an Egyptian god g equals the count of all the facts where something is the parent of g. 

 

// The number of parents of g is the count of all the facts where something is a parent of g 
nrParentsOf[g] = n  <-  
 agg<<n = count()>> isaParentOf(_, g). 
 

If a god (e.g. Atum-Ra) has no parents, you might expect this count function to return 0. However, in 

this case the LogiQL the count function returns no value at all if it doesn’t find any facts satisfying the 

condition. To ensure that 0 is returned for such empty set cases, we can simply assign 0 as the default value 

for the count function. This is coded as follows using the lang:defaultValue metapredicate followed by square 

brackets that enclose the grave accent character “`” followed by function name. 

 

// The default value of the nrParentsOf function is 0. 
lang:defaultValue[`nrParentsOf] = 0. 
 

The frequency constraint may now be coded simply as follows, using two characters “<=” for “≤”. 

 

// Each Egyptian god has at most 2 parents 
nrParentsOf[_] = n  ->  n <= 2. 
 

For your convenience in entering code to the REPL tool, the full schema code is repeated below. 

 

EgyptianGod(g), hasGodName(g:gn)  ->  string(gn). 
isaParentOf(g1, g2)  ->  EgyptianGod(g1), EgyptianGod(g2). 
isaChildOf(g1, g2)  <-  isaParentOf(g2, g1). 
isaParentOf(g1, g2) -> !isaParentOf(g2, g1).  // asymmetric 
isaParentOf(g1, g2), isaParentOf(g2, g3) ->  !isaParentOf(g1, g3).  // intransitive 
isanAncestorOf(g1, g2)  <-   

isaParentOf(g1, g2) ;  
isaParentOf(g1, g3), isanAncestorOf(g3, g2). 

!isanAncestorOf(g, g). // No Egyptian God is an ancestor of itself 
// No EgyptianGod is a parent of a descendant of one of its children 
isaParentOf(g1, g2), isanAncestorOf(g2, g3)  ->  !isaParentOf(g1, g3). 
// The number of parents of g is the count of all the facts where something is a parent of g 
nrParentsOf[g] = n  <-  
 agg<<n = count()>> isaParentOf(_, g). 
// The default value of the nrParentsOf function is 0. 
lang:defaultValue[`nrParentsOf] = 0. 
// Each Egyptian god has at most 2 parents 
nrParentsOf[_] = n  ->  n <= 2. 
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To enter the schema in the free, cloud-based REPL tool, use a supported browser to access the website 

https://repl.logicblox.com. The latest version of the REPL tool now appears to require you to explicitly create 

a workspace before adding code blocks to it. To do this, you may simply enter the following code: 
 

create --unique 
 

Schema code is entered in one or more blocks of one or more lines of code, using the addblock command 

to enter each block. After the “/>” prompt, type the letter “a”, and click the addblock option that then appears. 

This causes the addblock command (followed by a space) to be added to the code window. Typing a single 

quote after the addblock command causes a pair of single quotes to be appended, with your cursor placed 

inside those quotes ready for your block of code. 

Now copy the full schema code provided above to the clipboard (e.g. using Ctrl+C), then paste it 

between the quotes (e.g. using Ctrl+V), and then press the Enter key. You are now notified that the block 

was successfully added, and a new prompt awaits your next command (see Figure 4). By default, the REPL 

tool also appends an automatically generated identifier for the code block. Alternatively, you can enter each 

line of code directly, using a separate addblock command for each line. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4 Creating a workspace and then adding a block of schema code. 

The data in Figure 3(a) may be entered in LogiQL using the following delta rules. A delta rule of the 

form +fact inserts that fact. Recall that plain, double quotes (i.e. ",") are needed here, not single quotes or 

smart double quotes. Hence it’s best to use a basic text editor such as WordPad or NotePad to enter code that 

will later be copied into a LogiQL tool. 
 

+EgyptianGod(g1), +hasGodName(g1:"Atum-Ra"), +EgyptianGod(g2), +hasGodName(g2:"Shu"), 
+EgyptianGod(g3), +hasGodName(g3:"Tefnut"), +EgyptianGod(g4), +hasGodName(g4:"Geb"), 
+EgyptianGod(g5), +hasGodName(g5:"Nut"), +EgyptianGod(g6), +hasGodName(g6:"Isis"), 
+EgyptianGod(g7), +hasGodName(g7:"Osiris"), +EgyptianGod(g8), +hasGodName(g8:"Nephthys"), 
+EgyptianGod(g9), +hasGodName(g9:"Seth"), 
+isaParentOf(g1, g2), +isaParentOf(g1, g3), 
+isaParentOf(g2, g4), +isaParentOf(g2, g5), 
+isaParentOf(g3, g4), +isaParentOf(g3, g5), 
+isaParentOf(g4, g6), +isaParentOf(g4, g7), +isaParentOf(g4, g8), +isaParentOf(g4, g9), 
+isaParentOf(g5, g6), +isaParentOf(g5, g7), +isaParentOf(g5, g8), +isaParentOf(g5, g9). 

https://repl.logicblox.com/
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 Delta rules to add or modify data are entered using the exec (for ‘execute’) command. To invoke the 

exec command in the REPL tool, type “e” and then select exec from the drop-down list. A space character is 

automatically appended. Typing a single quote after the exec command and space causes a pair of single 

quotes to be appended, with your cursor placed inside those quotes ready for your delta rules. Now copy the 

lines of data code provided above to the clipboard (e.g. using Ctrl+C), then paste it between the quotes (e.g. 

using Ctrl+V), and then press the Enter key. A new prompt awaits your next command (see Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  Adding the data. 

 

Now that the data model is stored, you can use the print command to inspect the contents of any 

predicate. For example, to list the names of the Ennead gods, type “p” then select print from the drop-down 

list, then type a space followed by “E”, then select EgyptianGod from the drop-down list and press Enter. 

The print command for the nrParentsOf predicate fails to include the 0 result for Atum-Ra, but this value can 

be returned by using a query, as discussed below. 

To perform a query, you specify a derivation rule to compute the facts requested by the query. For 

example, the following query may be used to list the god name and number of parents of each Egyptian god. 

The rule’s head uses an anonymous predicate to capture the result derived from the rule’s body. The head 

variables gn and n are implicitly universally quantified. The variable g introduced in the body is implicitly 

existentially quantified. 
 

_(gn, n)  <-  hasGodName(g:gn), nrParentsOf[g] = n. 
 

In LogiQL, queries are executed by appending their code in single quotes to the query command. To do 

this in the REPL tool, type “q”, choose “query” from the drop-down list, type a single quote, then copy and 

paste the above LogiQL query code between the quotes and press Enter. The relevant query result is now 

displayed as shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 A query to list the god name and the number of parents of each of the Ennead gods. 
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 The numeric expression in an ORM frequency constraint may take various forms, such as n (exactly n), 

≤ n (at most n), ≥ n (at least n), n..m (at least n and at most m). These may be coded in LogiQL in a similar 

way to that discussed above. 

 In addition to simple frequency constraints, compound frequency constraints may be specified. Each 

compound uniqueness constraint applies to a sequence of two or more roles. For example, in Figure 7 the 

frequency constraint of 2 is attached to the join of the two roles hosted by Department and Year. This 

constraint ensures that each department and year that has staff numbers recorded in the fact type Department in 

Year had staff of Gender in Quantity appears there twice (once for each gender). The NORMA tool verbalizes this 

constraint thus: Each Department, Year combination in the population of “Department in Year had staff of Gender in Quantity” 

occurs there exactly 2 times. The coding of this example in LogiQL is left as an optional exercise. 

 

 

 

 

 

 

Figure 7 An ORM schema with a compound frequency constraint. 

 

 

External Frequency Constraints 

 
As you may have realized, a frequency constraint in ORM is a generalization of a uniqueness constraint 

(which is equivalent to a frequency constraint of 1). Just as ORM supports external uniqueness constraints, 

it also supports external frequency constraints. An external frequency constraint applies to a sequence of two 

or more roles from different predicates. For example, consider the following report extract from a university 

where each student may enroll at most twice in the same course. Enrollments are identified by enrollment 

numbers, students by student numbers, and courses by course codes. Note that student 120 has enrolled twice 

in course CS100. The frequency constraint just mentioned would be violated if that student enrolled a third 

time in that course. 

 
EnrollmentNr StudentNr Course Code 

1001 

1002 

1003 

3001 

120 

120 

501 

120 

CS100 

CS135 

CS135 

CS100 

 
An ORM schema for this example is shown in Figure 8. The circled “≤ 2” external frequency constraint 

applied to the roles hosted by Student and Course indicates that for each state of the database, each (student, 

course) pair that populates those roles does so at most twice. This constraint verbalizes thus: For each Student 

and Course, there are at most 2 Enrolment instances where that Enrollment is by that Student and is in that Course. 
 

 

 

 

 

 

 

 

Figure 8 An ORM schema with an external frequency constraint. 

This ORM schema may be coded in LogiQL as follows. The external frequency constraint is enforced 

by using the count function to derive the number of enrollments of a given student in a given course, and 

then constraining that number to be at most 2.  
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Enrollment(e), hasEnrollmentNr(e:n)  ->  int(n). 
Student(s), hasStudentNr(s:n)  ->  int(n). 
Course(c), hasCourseCode(c:cc)  ->  string(cc). 
studentInvolvedIn[e] = s  ->  Enrollment(e), Student(s). 
courseInvolvedIn[e] = c  ->  Enrollment(e), Course(c). 
// Each Enrollment involves both a student and a course 
Enrollment(e) -> studentInvolvedIn[e] = _, courseInvolvedIn[e] = _.   
 
/* For each student s who enrolled in course c, 
   n is the number of cases where there exists an 
   enrollment e involving that s and that c */ 
nrEnrollmentsFor[s, c] = n  <- 
    agg<<n = count()>>studentInvolvedIn[e] = s, courseInvolvedIn[e] = c. 
 
// Each student enrolls at most twice in the same course 
nrEnrollmentsFor[_, _] = n  ->  n <= 2. 

 

 
Conclusion 
 

The current article discussed how to declare internal and external frequency constraints in ORM and LogiQL. 

Various other constraints (e.g. value-comparison constraints, object and role cardinality constraints) may be 

specified graphically in ORM and coded in LogiQL. The core reference manual for LogiQL is accessible at 

https://developer.logicblox.com/content/docs4/core-reference/. An introductory tutorial for LogiQL and the 

REPL tool is available at https://developer.logicblox.com/content/docs4/tutorial/repl/section/split.html. 

Further coverage of LogiQL may be found in [20]. 
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