
Entity Relationship modeling from an ORM perspective: Part 2

Terry Halpin
Microsoft Corporation

Introduction

This article is the second in a series of articles dealing with Entity Relationship (ER) modeling from the
perspective of Object Role Modeling (ORM). Part 1 provided a brief overview of the ER approach, and
then covered the basics of the Barker ER notation [1], that has long been supported in CASE tools from
vendors such as Oracle Corporation. In this notation, entity types are depicted as named, soft rectangles,
and binary relationships are shown as lines with forward and inverse names. If shown, attributes are listed
below the entity type name. A “#” indicates that an attribute is [part of] the primary identifier of the entity
type, a “*”indicates the attribute is mandatory and a “°” indicates the attribute is optional. Only binary
relationships are allowed, so a role corresponds to a half-line (half a relationship line). If a role is
mandatory, its half-line is solid. If a role is optional, its half-line is dashed. For role cardinality, a crows-
foot at the end indicates “many” and its absence indicates “1”. A bar “|” across one end of a relationship
indicates that the relationship is a component of the primary identifier for the entity type at that end. Part 1
discussed examples of the above notations and compared them with the corresponding ORM notations.
This second article briefly discusses verbalization, then examines the Barker ER notation for exclusion
constraints, frequency constraints, subtyping and non-transferable relationships.

Barker ER: verbalization

To enable the optionality and cardinality settings to be verbalized, Barker [1, p. 3-5] recommends the
following naming discipline for relationships. Let A R B denote an infix relationship R from entity type A to
entity type B. Name R in such a way that each of the following four patterns results in an English sentence:

 each A (must | may) be R (one and only one B | one or more B-plural-form)

Use “must” or “may” when the first role is mandatory or optional respectively. Use “one and only one” or
“one or more” when the cardinality on the second role is one or many respectively. For example, the
optionality/cardinality settings in Figure 1(a) verbalize as: each Employee must be an occupier of one and only one
Room; each Room may be occupied by one or more Employees.

Figure 1 The ER diagram (a) is equivalent to the ORM diagram (b)

 The constraints on the left hand role in the equivalent ORM model shown in Figure 1(b) verbalize as:
each Employee occupies some Room; each Employee occupies at most one Room. If desired, these constraints may be
combined to verbalize as: each Employee occupies exactly one Room. Since the right-hand role has no
constraints, this is not normally verbalized in ORM (unlike Barker ER). However the lack of any
uniqueness constraint could be verbalized explicitly as: it is possible that the same Room is occupied by more than
one Employee. If no inverse reading is available, it can be verbalized as: it is possible that more than one Employee
occupies the same Room. If you would like this explicit verbalization capability added as a configurable option
to the verbalizer in Visio Enterprise, please email me at TerryHa@microsoft.com.

EMPLOYEE ROOM

occupied by

Employee Room

occupies/ is occupied by

(a)

(b)

an occupier of

mailto:TerryHa@microsoft.com

 Regarding the lack of an explicit mandatory role constraint on the right-hand role, I am less inclined to
want that verbalized explicitly, because it may well be unstable. If Room plays no other fact roles, the role
is mandatory by implication (Room has not been declared independent), so verbalization may well confuse
here. If Room does play another fact role, and we decide that some rooms may be unoccupied, we could
declare this explicitly as: it is possible that some Room is occupied by no Employee. Or equivalently: it is not
necessary that each Room is occupied by some Employee. If no inverse reading is available, it could be verbalized
thus: it is possible that no Employee occupies some Room. If you would like an option for explicit verbalization of
optional roles in Visio Enterprise, please email me your thoughts on this.
 To its credit, the Barker verbalization convention is good for basic mandatory and uniqueness
constraints on infix binaries. However it is far less general than ORM’s approach, which applies to
instances as well as types, for predicates of any arity, infix or mixfix, and covers many more kinds of
constraint, with no need for pluralization. As a trivial example, the fact instance “Employee ‘101’ an
occupier of Room 23” is not proper English, but “Employee ‘101’ occupies Room 23” is good English.

Exclusion constraints

In Barker ER notation, an exclusion constraint over two or more roles is shown as an “exclusive arc”
connected to the roles with a small dot or circle. For example, Figure 2(a) includes the constraint that no
employee may be allocated both a bus pass and a parking bay. In ORM this constraint is depicted by
connecting “⊗ ” to the relevant roles by a dotted line, as shown in Figure 2(b).

Figure 2 A simple exclusion constraint in (a) Barker ER notation and (b) ORM

 To declare that two or more roles are mutually exclusive and disjunctively mandatory, the Barker
notation uses the exclusive arc, but each role is shown as mandatory (solid line). For example, in Figure
3(a) each account is owned by a person or a company, but not both. This notation is liable to mislead, since
it violates the orthogonality principle in language design. Viewed by itself, the first role of the association
Account owned by Person would appear to be mandatory, since a solid line is used. But the role is actually
optional, since superimposing the exclusive arc changes the semantics of the solid line to mean the role
belongs to a set of roles that are disjunctively mandatory.

Figure 3 An exclusive-or constraint in (a) Barker ER notation and (b) ORM

EMPLOYEE
BUSPASSallocated

PARKING
BAY

is allocated

Employee

BusPass

ParkingBay

is allocated

allocated

(a) (b)

ACCOUNT owned by

COMPANY

is owned by

Account

Person

Company

is owned by

owned by

PERSON

(a) (b)

 Contrast this with the equivalent ORM model shown in Figure 3(b). Here an exclusion constraint ⊗ is
orthogonally combined with a disjunctive mandatory (inclusive-or) constraint ! to produce an exclusive-or
constraint, shown here by the “lifebuoy” or partition symbol formed by overlaying one constraint symbol
on the other. As an alternative, the inclusive-or and exclusion constraints may be displayed separately.
 The ORM notation makes it clear that each role is individually optional, and that the exclusive-or
constraint is a combination of inclusive-or and exclusion constraints. Suppose we modified our business so
that the same account could be owned by both a person and a company. Removing just the exclusion
constraint from the model leaves us with the inclusive-or constraint ! that each account is owned by a
person or company. Like UML, the Barker ER notation doesn’t even have a symbol for an inclusive-or
constraint, so is unable to diagram this or the many other cases of this nature that occur in practice.
 In the Barker notation, a role may occur in at most one exclusive arc. ORM has no such restriction.
For example, in Figure 4(a) no student can be both ethnic and aboriginal, and no student can be both an
aboriginal and a migrant (these rules come from a student record system in Australia). Even if Barker
notation supported unaries (it doesn’t) this situation could not be handled by exclusive arcs. Like UML,
Barker ER does not provide a graphic notation for exclusion constraints over role-sequences. For instance,
it cannot capture the ORM pair-exclusion constraint in Figure 4(b), which declares that no person who
wrote a book may review the same book. Such rules are very common. Moreover, the Barker notation
cannot express any ORM subset or equality constraints at all, even over simple roles.

Figure 4 Some ORM exclusion constraints not handled by exclusive arcs in Barker ER notation

Frequency constraints

The Barker ER notation allows simple frequency constraints to be specified. For any positive integer n, a
constraint of the form = n, < n, ≤ n, > n, ≥ n may be written beside a single role to indicate the number of
instances that may be associated with an instance playing the other role. For example, the frequency
constraint “≤ 2” in Figure 5 indicates that each person is a child of at most two parents. In the Barker
notation, this constraint is placed on the parent role, making it easy to read the constraint as a sentence
starting at the other role. In ORM the constraint is placed on the child role, making it easy to see the
impact of the constraint on the population (each person appears at most twice in the child role population).
Unlike the Barker notation, ORM allows frequency constraints to include ranges (e.g. 2-5) and to apply to
role-sequences.

Figure 5 A simple frequency constraint in (a) Barker ER notation and (b) ORM

Student

is ethnic

is a migrant

is aboriginal Person Book

wrote

reviewed

(a) (b)

PERSON a child of

a parent of ≤ 2

Person

is a child of /is a parent of

≤ 2

(a) (b)

Ann Bill
Ann Cathy
David Cathy
Ernie Cathy

Subtyping

In Barker ER notation, subtyping is depicted with a version of Euler diagrams. In effect, only partitions
(exclusive and exhaustive) can be displayed. For example, Figure 6(a) indicates that each patient is a male
patient or female patent but not both. Like UML, ORM displays subtyping using directed acyclic graphs
(DAGs). Subtype exclusion and exhaustion constraints are normally omitted in ORM, as in Figure 6(b),
since they are implied by the subtype definition and other constraints (e.g. mandatory, uniqueness and value
constraints on Patient is of Gender). However they can be explicitly displayed as in Figure 6(b).

Figure 6 A subtype partition in (a) Barker ER, (b) implicit ORM and (c) explicit ORM notation

 Euler diagrams are good for simple cases, since they intuitively show the subtype inside its supertype.
However unlike DAGs, they are hopeless for complex cases (e.g. many overlapping subtypes), and they
make it inconvenient to attach details to the subtypes. For the latter reason, attributes are often omitted from
subtypes when the Barker notation is used.
 In the Barker notation, if the original subtype list is not exhaustive, an “Other” subtype is added to
make it so, even if it plays no specific role. For example, in Figure 7 a vehicle is a car or truck or possibly
something else, and a car is a sedan or wagon or possible something else.
 A major problem with the Barker notation for subtyping is that it does not depict overlapping subtypes
(e.g. Manager and FemaleEmployee as subtypes of Employee) or multiple inheritance (e.g.
FemaleManager as a subtype of FemaleEmployee and Manager). While it is possible to implement multiple
inheritance in single inheritance systems (e.g. Java) by using some low level tricks, for conceptual
modeling purposes multiple inheritance should be simply modeled as multiple inheritance.
 As a final comparison point about subtyping, Barker ER lacks ORM’s capability for formal subtype
definitions and context-dependent identification schemes.

Figure 7 Non-exhaustive, exclusive subtypes in (a) Barker ER and (b) ORM

PATIENT

MALE
PATIENT

FEMALE
PATIENT

Patient

MalePatient FemalePatient

(a) (b)

Patient

MalePatient FemalePatient

(c)

VEHICLE

CAR

SEDAN

WAGON

OTHER CAR

TRUCK

OTHER
VEHICLE

Vehicle

Sedan

Car Truck

Wagon

(a) (b)

Non-transferable relationships

In addition to its static constraint notation, Barker ER includes a dynamic “changeability constraint” for
marking “non-transferable relationships”. This constraint declares that once an instance of an entity type
plays a role with an object, it cannot ever play this role with another object. This is indicated by adding an
open diamond to the constrained role. For example, Figure 8(a) declares that the birth country of a person is
non-transferable.
 As indicated in Figure 8(b), ORM does not currently include a notation for this constraint. It would be
possible to add a notation for this (as well as UML’s changeability settings of changeable, frozen,
addOnly), but it is at least debatable whether this is advisable. If we were to add such a notation, we would
need to ensure that the implemented model is still open to error corrections by duly authorized users. For
example, if my birth country was mistakenly entered as Austria, it should be possible to change this to
Australia. For further discussion on this issue, see my comments on changeability properties in [2]. If you
have some strong views on this issue, please email me your thoughts.

Figure 8 Non-transferable nature of a relationship is declared in (a) Barker ER, but not in (b) ORM

Conclusion

The Barker ER notation does a good job of expressing simple mandatory, uniqueness, exclusion and
frequency constraints, simple subtyping and also non-transferable relationships. However, if a feature is
modeled as an attribute instead of as a relationship, very few of these constraints can be specified for it. In
contrast to ORM, the Barker ER notation does not support unary, n-ary or objectified associations (nesting).
Moreover it lacks support for most of the advanced ORM constraints (e.g. subset, multi-role exclusion, ring
constraints and join constraints). It does not include a formal textual language such as ConQuer for
specifying queries, other constraints and derivation rules at the conceptual level. Nevertheless it is better
than many other notations for ER modeling, and is still widely used. If you ever need to specify a model in
Barker ER notation, I suggest you first do the model in ORM, then map it to the Barker notation and make
a note of any rules that can’t be expressed there diagrammatically.

Next issues

Later articles in this series will examine the Information Engineering notation for ER, before concluding
with a discussion of IDEF1X.

References

1. Barker, R. 1990, CASE*Method: Tasks and Deliverables, Addison-Wesley, Wokingham, England.
2. Halpin, T.A. 1999, ‘UML data models from an ORM perspective: Part 10’, Journal of Conceptual

Modeling, InConcept, Minneapolis USA.

PERSON COUNTRY
born in

Person Country

was born in

(a) (b)

	Barker ER: verbalization
	Exclusion constraints
	Frequency constraints
	Subtyping
	Non-transferable relationships

