
Entity Relationship modeling from an ORM perspective: Part 1 1

Entity Relationship modeling from an ORM perspective:
Part 1

by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This is a revised version of a paper that first appeared in the December 1999 issue of the Journal of
Conceptual Modeling, published by InConcept.

This paper is the first in a series of articles examining data modeling in the Entity
Relationship (ER) approach from the perspective of Object Role Modeling (ORM). This
article examines basic aspects of the Barker notation for ER.

Introduction

Entity Relationship modeling (ER) views the application domain in terms of entities that
have attributes and participate in relationships. For example, the fact that an employee
was born on a date is modeled by assigning a birthdate attribute to the Employee entity
type, whereas the fact that an employee works for a department is modeled as a
relationship between them. This view of the world is quite intuitive, and in spite of the
recent rise of UML for modeling object-oriented applications, ER is still the most popular
data modeling approach for database applications.

The ER approach was originally proposed by Peter Chen in 1976, in the very first
issue of an influential ACM journal [2]. As shown in Figure 1, Chen’s original notation
used rectangles for entity types, diamonds for relationships, and ellipses for attributes.
The double ellipse indicates unique identifier attributes, and the “n and “1” indicate the
relationship is many to one (each employee works for at most one department, but many
employees may work for the same department).

Figure 1 An early ER notation used by Chen

EMPLOYEE DEPARTMENTworks for
n 1

birthdateempnr budgetdeptcode

Entity Relationship modeling from an ORM perspective: Part 1 2

The direction in which relationship names are to be read is formally undecided,
unless we add some additional marks (e.g. arrows) or rules (e.g. always read from left to
right and from top to bottom). For example, does the employee work for the department,
or does the department work for the employee? Although we can use our background
knowledge to informally disambiguate this example, it is quite common nowadays to see
ER models with relationships whose intended direction can only be guessed at by
anybody other than the model’s creator. For example, consider the impact of misreading
the intended direction for the following: Person killed Animal; Person is loved by Person.
This problem is exacerbated if the verb phrase used to name the relationship is shortened
to one word (e.g. “work”, “love”), unfortunately still a fairly common practice.

Chen’s notation evolved over time. His current ER-Designer tool uses hexagons
instead of diamonds, and supports n-ary relationships. Outside academia, Chen’s
notation seems to be rarely used nowadays, so I’ll say no more about it here. One of the
problems with the ER approach is that there are so many versions of it, with no single
standard. In industrial practice, the most popular versions of ER are the Barker and
Information Engineering (IE) notations. Another popular data modeling notation is
IDEF1X, but since this is a hybrid of ER and relational notation, I don’t count it as a true
ER representative. As discussed elsewhere [4], UML class diagrams can be regarded as an
extended version of ER. The rest of this article focuses on basic aspects of the Barker
notation for ER. Later articles will examine IE and IDEF1X.

Barker ER: the basics

I use the term “Barker ER” for the ER notation discussed in the classic treatment by
Richard Barker [1]. While Oracle Corporation has long used this notation in its CASE
tools, Oracle’s Object Designer tool now supports UML as an alternative to its traditional
ER notation. For database applications, many modelers still prefer the Barker ER notation
in preference to UML, and it will be interesting to see whether this changes over time.
Dave Hay, an experienced modeler and ardent fan of the Barker ER notation, argues that
“there is no such thing as ‘object-oriented analysis’” [6], only object-oriented design, and
that “UML is … not suitable for analyzing business requirements in cooperation with
business people”[7].

While I agree with Dave Hay that UML class diagrams are less than ideal for data
modeling, I feel that his preferred ER notation shares some of UML’s weaknesses in being
attribute-based. As I’ve discussed before in a UML context [4, 5], using attributes in a base
conceptual model adds complexity and instability, while making it harder to validate
models with domain experts using verbalization and sample populations. Attributes are
great for logical design, since they allow compact diagrams that directly represent the
data structures (e.g. relations or object-relations) used for the actual design. However
when I’m performing conceptual analysis, I just want to know what the facts and rules are
about the business, and I want to communicate this information in sentences, so that the

Entity Relationship modeling from an ORM perspective: Part 1 3

model can be understood by the domain experts. I sure don’t want to bother about how
facts are grouped into multi-fact structures. Whether some fact will end up in the design
as an attribute is not a conceptual issue to me. As Ron Ross says, “Sponsors of business
rule projects must sign off on the sentences—not on graphical data models. Most
methodologies and CASE tools have this more or less backwards” [7, p.15]. The ORM
reporting facilities in Visio Enterprise allow the domain expert to inspect ORM models
fully verbalized into sentences with examples, making validation much easier and safer.

Now that I’ve stated my bias up front, let’s examine the Barker ER notation itself.
The basic conventions are illustrated in Figure 2. Entity types are shown as soft rectangles
(rounded corners) with their name in capitals. Attributes are written below the entity type
name. Some constraint information may appear before an attribute name. A “#” indicates
that the attribute is the primary identifier of the entity type, or at least a component of its
primary identification scheme. A “*” or heavy dot “•” indicates the attribute is mandatory
(i.e. each instance in the database population of the entity type must have a non-null value
recorded for this attribute). A “°” indicates the attribute is optional. Some modelers also
use a period “.” to indicate the attribute is not part of the identifier.

Figure 2 The basic Barker ER notation

Relationships are restricted to binaries (no unaries, ternaries or longer relationships),
and are shown as lines with a relationship name at the end from which that relationship
name is to be read. This name placement overcomes the ambiguous direction problem
mentioned earlier. Both forward and inverse readings may be displayed for a binary
relationship, one on either side of the line. This makes the Barker notation superior to
UML for verbalizing relationships.

From an ORM perspective, each end (or half) of a relationship line corresponds to a
role. Like ORM, Barker ER treats role optionality and cardinality as distinct, orthogonal
concepts, instead of lumping them together into a single concept (e.g. multiplicity in
UML). A solid line-half denotes a mandatory role, and a dotted line-half indicates an
optional role. For cardinality, a crow’s foot intuitively indicates “many”, by its many
“toes”. The absence of a crow’s foot intuitively indicates “one”. The crow’s foot notation
was invented by Gordon Everest, who originally used the term “inverted arrow” [3] but
now calls it a “fork”. Figure 3 shows the correspondence with the ORM notation for
uniqueness and mandatory role constraints.

To enable the optionality and cardinality settings to be verbalized, Barker [1, p. 3-5]
recommends the following naming discipline for relationships. Let A R B denote an infix
relationship R from entity type A to entity type B. Name R in such a way that each of the
following four patterns results in an English sentence:

EMPLOYEE

* emp nr
* emp name
o fax nr

ROOM

* room nr
* size
o phone nr

occupied by

an occupier of

Entity Relationship modeling from an ORM perspective: Part 1 4

each A (must | may) be R (one and only one B | one or more B-plural-form)

Use “must” or “may” when the first role is mandatory or optional respectively. Use
“one and only one” or “one or more” when the cardinality on the second role is one or
many respectively. For example, the optionality/cardinality settings in Figure 3(a)
verbalize as: each Employee must be an occupier of one and only one Room; each Room
may be occupied by one or more Employees. This verbalization convention is good for
basic mandatory and uniqueness constraints on infix binaries. However it is far less
general than ORM’s approach, which applies to instances as well as types, for predicates
of any arity, and covers many more kinds of constraint, with no need for pluralization. As
a trivial example, the fact instance “Employee ‘101’ an occupier of Room 23” is not proper
English, but “Employee ‘101’ occupies Room 23” is good English.

Figure 3 The ER diagram (a) is equivalent to the ORM diagram (b)

If each of the two roles in a binary association may be assigned one of
optional/mandatory and one of many/one, there are sixteen patterns. The equivalent
Barker ER and ORM diagrams for the first eight of these cases are shown in Figure 4.

EMPLOYEE ROOM

occupied by

Employee Room

occupies/ is occupied by

(a)

(b)

an occupier of

Entity Relationship modeling from an ORM perspective: Part 1 5

Figure 4 Some equivalent cases

The other eight cases are shown in Figure 5. Although all eight are legal in ORM, the
last case where both roles of a many:many relationship are mandatory is considered
illegal by Barker.

A BA B
n:1
both roles
optional

A BA B
1:n:
both roles
optional

A BA B

A BA B

1:1
both roles
optional

m:n
both roles
optional

Barker ER ORM

A BA B
n:1
first role
mandatory

A BA B
1:n
first role
mandatory

A BA B

A BA B

1:1
first role
mandatory

m:n
first role
mandatory

Entity Relationship modeling from an ORM perspective: Part 1 6

Figure 5 Other equivalent cases

Ring associations that considered illegal by Barker are shown in Figure 6(a).
Although rare, they sometimes occur in reality, so should be allowed at the conceptual
level, as permitted in ORM. As an exercise, you may wish to invent satisfying populations
for the ORM associations in Figure 6 (b). Although considered illegal by Barker, at least
some of these patterns are allowed in Oracle’s CASE tools.

A BA B
n:1
second role
mandatory

A BA B
1:n
second role
mandatory

A BA B

A BA B

1:1
second role
mandatory

m:n
second role
mandatory

A BA B
n:1
both roles
mandatory

A BA B
1:n
both roles
mandatory

A BA B

A BA B

1:1
both roles
mandatory

m:n
both roles
mandatory

Barker ER ORM

Entity Relationship modeling from an ORM perspective: Part 1 7

Figure 6 Illegal ring associations in Barker ER (a) that are rare but allowed in ORM (b)

In Barker ER, a bar “|” across one end of a relationship indicates that the
relationship is a component of the primary identifier for the entity type at that end. In
Figure 7 for example, Employee and Building have simple identifiers, but Room has a
composite reference scheme, being identified partly by its room number and partly by the
building in which it is included.

Figure 7 Room is identified by combining its room nr and its relationship to Building

The use of identification bars provides some of the functionality afforded by
external uniqueness constraints in ORM. For example, the schemas in Figure 8 are
equivalent. The other attributes of Room and Building in ORM would be modeled in
ORM as relationships. ORM’s external uniqueness notation seems to me to convey more
intuitively the idea that each RoomNr, Building combination is unique (i.e. refers to at
most one room). But maybe I’m biased. At any rate, this constraint (as well as any other
graphic constraint) can be automatically verbalized in natural language.

Figure 8 Composite identification in Barker ER (a) and ORM (b)

A

A

A

A

A

A

A

A

(a)

(b)

EMPLOYEE

* emp nr
* emp name
o fax nr

ROOM

* room nr
* size
o phone nr

BUILDING

* bldg nr
* nr floors

in

the container of

an occupier of

occupied by

Room

RoomNr

Building
(nr)

u

has

is in /includes

ROOM

* room nr
BUILDING

* bldg nr

in

the
container of

(a) (b)

Entity Relationship modeling from an ORM perspective: Part 1 8

Some people misread the bar notation for composite identification as a “1”, since
this is what the symbol means in many other ER notations. But this isn’t a problem if you
don’t have to work with multiple versions of ER. The main problem with the “#” and bar
notations is that they cannot be used to declare uniqueness constraints that are not used
for a primary identification scheme. A second problem is that they are two very different
notations for the same fundamental concept (uniqueness). Because ORM allows
constraints to be used wherever they make sense, and always uses relationships instead of
attributes, it doesn’t have these problems. An example may help illustrate some of these
ideas. Suppose we wanted to model the information shown in Table 1, as well as other
facts about rooms.

Table 1 A simple data use case for room scheduling

Room Time ActivityCode ActivityName
20
20
33
33
…

Mon 9 am
Tue 2 pm
Mon 9 am
Fri 5 pm
…

VMC
VMC
AQD
SP
…

VisioModeler class
VisioModeler class
ActiveQuery demo
Staff party
…

The table suggests that rooms can be simply identified by room numbers, so let’s
accept that. One way of modeling the situation in Barker ER is shown in Figure 9. Here
the bar notation is used to show that RoomTimeSlot is identified by combining its time
and room number.

Figure 9 An ER diagram for room scheduling

The use of attributes in this model makes it hard to verbalize and populate the
schema for validation purposes. Moreover, there is at least one constraint missing.
Compare this with the populated ORM model for the same situation (Figure 10). Here the
facts are naturally verbalized as a ternary (Room at Time is booked for Activity) and a
binary (Activity has ActivityName). The associated fact tables include the original facts, as
well as counter-facts (italicized) to test the constraints. The first counter-row (20, Mon 9
am, AQD) tests the uniqueness constraint that a room at a time is booked for at most one
activity. The second counter-row tests the uniqueness constraint that at most one room
can be booked for a given activity at a given time. This constraint may well be wrong, but

ROOM TIME SLOT

* time

ROOM

* roomNr
 ...

of

ACTIVITY

allocated

* activityCode
 * activityName

within

booked
for

Entity Relationship modeling from an ORM perspective: Part 1 9

at least we can express it and test it in ORM. With the ER model there is no way of even
specifying the constraint, much less testing it.

The counter rows (SP, Sales phonecalls) and (PTY, Staff party) are designed to check the
uniqueness constraints that each Activity has at most one Activity name and vice versa. If
these are rejected, the association really is 1:1, as its basic population suggests. Since the
ER notation being discussed doesn’t include a way of indicating that attributes other than
the primary identifier are unique, it isn’t very helpful here. As a small point, the Y2K row
has been added to the original population to indicate that it is possible for some listed
activities to be unscheduled.

Figure 10 An ORM diagram for room scheduling, with sample and counter data

In case it looks like I’m just bashing attribute-based approaches like ER in this
article, let me say again that I find attribute-based models useful for compact overviews
and for getting closer to the implementation model. However I generate these by
mapping from ORM, which I use exclusively for conceptual analysis. This makes it easier
to get the model right in the first place, and to modify it as the underlying domain
evolves. Unlike ER (and UML for that matter), ORM was built from a linguistic basis, and
its graphic notation was carefully chosen to exploit the potential of sample populations.
To reap the benefits of verbalization and population for communication with and
validation by domain experts, it’s better to use a language that was designed with this in
mind. An added benefit of ORM is that its graphic notation can capture many more
business rules than popular ER notations.

Next issues

Later articles in this series will consider more advanced aspects of the Barker ER notation,
including exclusion constraints, frequency constraints, subtyping and non-transferable
relationships, and then examine the Information Engineering notation for ER, before
concluding with a discussion of IDEF1X.

Room
(nr)

Time
(dh)

Activity
(code)

... at ... is booked for ...
ActivityName

has /refers to

20 Mon 9am VMC
20 Tue 2pm VMC
33 Mon 9am AQD
33 Fri 5pm SP
...
20 Mon 9am AQD ?
33 Mon 9am VMC ?

AQD ActiveQuery demo
SP Staff party
VMC VisioModeler class
Y2K Year 2000 seminar
... ...
SP Sales phonecalls ?
PTY Staff party ?

Entity Relationship modeling from an ORM perspective: Part 1 10

References

1. Barker, R. 1990, CASE*Method: Tasks and Deliverables, Addison-Wesley, Wokingham,
England.

2. Chen, P.P. 1976, ‘The entity-relationship model—towards a unified view of data’, ACM
Transactions on Database Systems, vol. 1, no. 1, pp. 9−36.

3. Everest, G. 1976, ‘Basic Data Structure Models Explained with a Common Example’, Proc.
Fifth Texas Conference on Computing Systems, (Austin, TX, 1976 October 18-19), IEEE
Computer Society publications office, Long Beach, CA, pp. 39-45.

4. Halpin, T.A. 1998-9, ‘UML data models from an ORM perspective: Parts 1-10’, Journal of
Conceptual Modeling, InConcept, Minneapolis USA.

5. Halpin, T.A. & Bloesch, A.C. 1999, ‘Data modeling in UML and ORM: a comparison’,
Journal of Database Management, vol. 10, no. 4, Idea group Publishing Company, Hershey,
USA, pp. 4-13.

6. Hay, D.C. 1999, ‘There is no object-oriented analysis’, DataToKnowledge Newsletter, vol. 27,
no. 1, Business Rule Solutions, Inc., Houston TX, USA.

7. Hay, D.C. 1999, ‘Object orientation and information engineering: UML’, The Data
Administration Newsletter, no. 9, (June 1999), ed. R.S. Reiner, available online at
www.tdan.com.

8. Ross, R.G. 1998, Business Rule Concepts, Business Rule Solutions, Inc., Houston TX, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

