
Conceptual Queries
by Dr. Terry Halpin, BSc, DipEd, BA, MLitStud, PhD
Director of Database Strategy, Visio Corporation

This paper first appeared in vol. 26, no. 2 of Database Newsletter and is reproduced by permission.

Formulating non-trivial queries in relational languages such as SQL or QBE can prove
daunting to end users. ConQuer, a new conceptual query language based on Object Role
Modeling (ORM), enables users to pose complex queries in a readily understandable way,
without needing to know how the information is stored in the underlying database. This
article highlights the advantages of conceptual query languages such as ConQuer over
traditional query languages for specifying queries and business rules.

Four query levels
There are four main levels at which humans may communicate with an information
system:

• External
• Conceptual
• Logical
• Physical

The external level deals with the actual interfaces and input/output representations
used to work directly with the system (e.g. screen forms and printed reports). At the
conceptual level, the information is expressed in its most fundamental form, using concepts
and language familiar to the users (e.g. Employee drives Car) and ignoring
implementation and external presentation aspects. At the logical level, a commitment is
made to the general type of data model to be used for storage (e.g. relational or object-
oriented) and the information is expressed using the logical constructs of that model (e.g.
tables and keys). At the physical level, a specific DBMS is chosen (e.g. MS Access or DB2)
and all the detailed internal details are fleshed out (e.g. indexes and clustering).

Since a conceptual schema expresses the structure of an application from a human
rather than a machine perspective, it facilitates communication between modeler and
subject matter experts during the modeling process, and it can be mapped automatically
to a variety of DBMS structures. Although software tools are often used for conceptual
modeling and mapping, they are rarely used for querying the conceptual model directly.
Instead, queries are typically formulated either at the external level using forms, or at the
logical level using a language such as SQL or QBE.

Query-By-Form (QBF) enables users to enter queries directly on a screen form, by
entering appropriate values or conditions in the form fields. This form-based interface is

Conceptual Queries 2

well suited to simple queries where the scope of the query is visible on a single form, and
no complex operations are involved. However this cannot be used to express complicated
queries. Moreover, saved QBF queries may rapidly become obsolete as the external
interface evolves. For such reasons, QBF is too restrictive for serious work.

For relational databases, SQL and QBE (Query-By-Example) are more expressive.
However, complex queries and even queries that are easy to express in natural language
(e.g. who does not speak more than one language?) can be difficult for non-technical users
to express in these languages. Moreover, an SQL or QBE query often needs to be changed
if the relevant part of the conceptual schema or internal schema is changed, even if the
meaning of the query is unaltered. Finally, relational query optimizers ignore many
semantic optimization opportunities arising from knowledge of constraints.

Logical query languages for post-relational DBMS’s (e.g. object-oriented and object-
relational) suffer similar problems. Their additional structures (e.g. sets, arrays, bags and
lists) often lead to greater complexity in both user formulation and system optimization.
For example, OQL [3] extends SQL with various functions for navigation as well as
composing and flattening structures, thus forcing the user to deal directly with the way
the information is stored internally. At the physical level, programming languages may be
used to access the internal structures directly (e.g. using pointers and records), but this
very low level approach to query formulation is totally unsuitable for end users.

Conceptual query languages
Given the disadvantages of query formulation at the external, logical or physical level, it
is not surprising that many conceptual query languages have been proposed to allow users
to formulate queries directly on the conceptual schema itself [1, 2]. Most of these language
proposals are academic research topics, with at best prototype tool support. One
commercial tool, English Wizard, provides some ability for users to enter queries directly
in English, but the tool currently suffers from problems with ambiguity and expressibility,
as well as the correctness of its SQL generation. By and large, current conceptual query
language tools based on Entity-Relationship (ER) or deductive models are challenging for
naïve users, and their use of attributes exposes their queries to instability, since attributes
may evolve into entities or relationships as the application model evolves.

This instability is avoided by using a query language based on Object Role Modeling
(ORM), a conceptual modeling approach that pictures the application world in terms of
objects that play roles (individually or in relationships), thus avoiding the notion of
attribute. ORM facilitates detailed information modeling since it is linguistically based, is
semantically rich and its notations are easily populated. An overview of ORM may be
found in [7] and a detailed treatment in [5].

The use of ORM for conceptual and relational database design is becoming more
popular, partly because of the spread of ORM-based modeling tools. However, as with
ER, the use of ORM for conceptual queries is still in its infancy. The first significant ORM-
based query language was RIDL [9], a hybrid language with both declarative and
procedural aspects. Although RIDL is very powerful, its advanced features are not easy to

Conceptual Queries 3

master, and while the modeling component was implemented in the RIDL* tool, the query
component was not supported. Another ORM query language is LISA-D [8]; although
very expressive, it is technically challenging for end users, and currently lacks tool
support.

Like ORM, the OSM (Object-oriented Systems Modeling) approach avoids the use of
attributes as a base construct. An academic prototype has been developed for graphical
query language OSM-QL [4] based on this approach. For any given query, the user selects
the relevant part of the conceptual schema, and then annotates the resulting subschema
diagram with the relevant restrictions to formulate the query. Negation is handled by
adding a frequency constraint of “0”, and disjunction is introduced by means of a
subtype-union operator. Projection is accomplished by clicking on the relevant object
nodes and then on a mark-for-output button.

Another recent ORM query language is ConQuer (the name derives from
“CONceptual QUERy”). ConQuer is more expressive than OSM-QL [2], easier for novice
users, and its commercial tool transforms conceptual queries into SQL queries for a
variety of back-end DBMSs. Moreover, the ConQuer tool does not require the user to be
familiar with the conceptual schema or the ORM diagram notation. The first version of
ConQuer was released in InfoAssistant [1]. Feedback from this release led to the redesign
of both the language and the user interface for greater expressibility and usability,
resulting in a new tool called ActiveQuery [2], a restricted version of which is available as
an OLE control for Windows applications. As well as complying with Microsoft’s user
interface standards, the tool provides an intuitive interface for constructing almost any
query that might arise in an industrial database setting. Typical queries can be
constructed by just clicking on objects with the mouse, and adding conditions.

The rest of this paper suggests some design principles for conceptual query
languages, and then illustrates how these principles are realized in ConQuer, as
supported by ActiveQuery. A brief outline of the underlying ORM framework is
included, as well as examples of how queries are formulated and mapped to SQL. Finally
some examples are given of how the query language can also be used to provide high
level declaration of business rules.

Language design criteria
The following four criteria were used in designing the ConQuer language and tool
support, and seem appropriate for conceptual query languages in general.

• Semantic strength
• Semantic clarity
• Semantic relevance
• Semantic stability

Semantic strength is a measure of a language’s expressibility (i.e. the range of queries
that can be expressed in the language). Ideally, the language should allow you to
formulate any question that is relevant to your application. In practice, something less

Conceptual Queries 4

than this ideal is acceptable. For most business applications, if the language can express
whatever is possible to formulate as a sequence of SQL-89 queries, this is often good
enough. In more complex cases, this might not be adequate. For example, a bill of
materials query requires recursion, which while supported by recursive union in the long
awaited SQL3 standard, is still not available in many commercial SQL dialects.
ActiveQuery was designed to translate ConQuer queries into a sequence of SQL
statements on the back end DBMS, and hence is limited in practice by the power of the
chosen SQL back end. In comparison with the low expressive power of QBF however, this
is a very mild limitation.

Semantic clarity is a measure of how easy it is to understand and use the language. To
begin with, the language must be unambiguous (i.e. there is only one possible meaning).
Since any ConQuer query corresponds to a qualified path through an ORM schema,
where all the object types and predicates are well defined, the meaning of the query is
essentially transparent. As we discuss shortly, the ActiveQuery tool automatically reveals
the relevant part of the application to the user, so that ConQuer queries can be formulated
without requiring any prior knowledge of the information space. Although this context
revelation is a feature of the tool rather than the language, even a manual formulation of
ConQuer queries requires no sub-conceptual knowledge (e.g. knowledge about how the
information is actually stored in a database). This is in sharp contrast to a query language
such as SQL, QBE or OQL, where the query needs to be formulated in terms of the storage
structures themselves.

Semantic relevance requires that only the information relevant to the intent of the query
needs to be stated. In order to formulate a query, the user must not be forced to include
other features of the application that have no bearing on the question that he or she wants
to ask.

Semantic stability is a measure of how well queries retain their original intent in the
face of changes to the application. Because ConQuer queries are based on ORM, they
continue to produce the desired result so long as their meaning endures. In other words,
you never need to change a ConQuer query if the English meaning of the question still
applies. In particular, ConQuer queries are not impacted by typical changes to an
application, such as addition of new fact types or changes to constraints or the relative
importance of some feature. This ensures semantic independence (i.e. the conceptual queries
are independent of changes to underlying structures when those changes have no effect
on meaning).

If the discussion so far seems pretty abstract or hard to follow, it should all become
clear with a few examples. The rest of the article is mainly concerned with illustrating
these four design criteria with sample queries based on a small application. The
underlying ORM schema for this application is explained in the next section.

A sample ORM schema
Although knowledge of the ORM diagram notation is not needed to formulate ConQuer
queries, some familiarity with it will help you to understand the basis of the query

Conceptual Queries 5

technology. A ConQuer query can be applied only to an ORM schema. Using a software
tool, an ORM schema may be entered directly, or instead reverse engineered from an
existing logical schema (e.g. a relational or object-relational schema). While reverse
engineering is automatic, some refinement by a human improves the readability (e.g. the
default names generated for predicates are not always as natural as a human can supply).

ORM is a bit like ER without attributes. If you are familiar with ER, just use a
relationship instead whenever tempted to portray some feature as an attribute, and you
have the basic ORM view of the world as a set of objects playing roles (parts in
relationships).

Figure 1 is an ORM conceptual schema fragment for an application about a company
with branches in various countries. Object types are shown as named ellipses. Entity types
have solid ellipses with their simple reference schemes abbreviated in parenthesis (these
references are often unabbreviated in queries). For example, “Car (regnr)” abbreviates
“Car is identified by RegNr”.

If an entity type has a compound reference scheme, this may be shown explicitly
using an external uniqueness constraint (circled “u”). In our example, a City is identified
by combining its Cityname and State (which in turn is identified by combining its
Statecode and Country). For instance, I live in a city called “Bellevue” that is in
Washington state; this state is in the country named “USA” and has the statecode “WA”
(whereas Western Australia is in the country named “Australia” and has the statecode
“WA”). Value types have dotted ellipses (e.g. “Statecode”), and a “+” indicates numeric
reference.

A predicate is a sentence with holes in it for object-terms. Predicates are shown as
named role sequences, where each role is depicted as a box. A role is just a part in a
relationship. In the example, all the relationships are binary (two roles) except for the
ternary (three role): USbranch achieved Rank in Year. Predicates may have any arity (number
of roles) and may be written in mixfix form (i.e. the object holes may be mixed in at any
position within the predicate— this is essential for languages like Japanese where the verb
comes at the end). A relationship type not used for primary reference is a fact type. An n-
ary relationship type has n! readings, but only n are needed to guarantee access from any
object type. Figure 1 shows forward and inverse readings (separated by “/” if needed) for
some of the relationships.

Conceptual Queries 6

FIGURE 1: A sample ORM conceptual schema.

An arrow-tipped bar across a role sequence depicts an internal uniqueness constraint.
For example, each employee has at most branch, but the same branch may employ more
than one employee. The ternary has two uniqueness constraints: the right-hand one
declares that a USbranch may achieve at most one rank in a given year; the left-hand one
states that a given rank in a given year is achieved by at most one USbranch (i.e. no ties).

A black dot connecting a role to an object type indicates that the role is mandatory (i.e.
each object in the database population of that object type must play that role). Subtypes
are connected to their supertype(s) by arrows, and given formal definitions. Here we have
only one subtype (USbranch). The two asterisked rules at the bottom of the figure declare

Employee
(nr)

Car
(regnr)

was born in /is birthplace of

Country
(name)

drives /is driven by

CarModel
(name)is of

Branch
(nr)

City

Language
(name)

speaks /is spoken by

PhoneNr Salary
(usd)+

Statecode

Cityname State

Color
(name)

has

earns /is earned by

has

heads

is headed by

works
for

employs
lives in

is located in /is location of

has
is
in

u

is
in

u

has

Employee
Name

is used in

uses

reports
to oac

has
main-

has
other-

supervises

USbranch

Rank
(nr)

Year
(AD)+

...
achieved

...
in
... * define Branch is in Country as

 Branch is located in a City
 that is in a State

 that is in Country

* each USbranch is a Branch
that is in Country 'USA'

Conceptual Queries 7

a derived fact type, and a subtype definition: these textual rules are essentially ConQuer
queries.

The circled “X” in the top right corner is a pair-exclusion constraint (an employee’s
main phone number must differ from his/her other phone number). The dotted arrow
just below the exclusion constraint is a simple subset constraint (if an employee has
another phone number, he/she must have a main phone number). The dotted arrow from
the heads predicate to the works-for predicate is a pair-subset constraint (each employee
who heads a branch also works for that branch). The “0ac” constraint on the reporting
relationship indicates this relationship is acyclic (no loops back to itself). ORM has other
kinds of constraint not shown here. InfoModeler’s verbalization ability allows schemas to
be entered or output in English sentences, so that it is not necessary to understand the
diagram notation.

Sample ConQuer queries and SQL mapping
Although ConQuer queries are based on ORM, users don’t need to be familiar with ORM
or its notation. A ConQuer query is set out in textual (outline) form (basically as a tree of
predicates connecting objects) with the underlying constraints hidden, since they have no
impact on the meaning of the query.

With ActiveQuery, a user can construct a query without any prior knowledge of the
schema. On opening a model for browsing, the user is presented with an object pick list.
When an object type is dragged to the query pane, another pane displays the roles played
by that object in the model. The user drags over those relationships of interest. Clicking an
object type within one of these relationships causes its roles to be displayed, and the user
may drag over those of interest, and so on. In this way, users may quickly declare a query
path through the information space, without any prior knowledge of the underlying data
structures. Users may also initially drag across several object types. The structure of the
underlying model is then used to automatically infer a reasonable path through the
information space (this Point-to-point query feature is ignored for the remainder of this
article).

Items to be displayed are indicated with a tick “ü”: these ticks may be toggled on/off
as desired. The query path may be restricted in various ways by use of operators and
conditions. As a simple example, consider the query: List each employee who lives in the
city that is the location of branch 52. This may be set out in ConQuer thus:

Q1 üEmployee
+-lives in City

+- is location of Branch 52

This implicit form of the query may be expanded to reveal the reference schemes (e.g.
EmployeeNr, BranchNr), and an equals sign may be included before “52”. For most users,
the meaning of a ConQuer query should be clear enough (semantic clarity). ActiveQuery
also generates an English verbalization of the query in case there is any doubt.

Conceptual Queries 8

Since ORM conceptual object types are semantic domains, they act as semantic “glue”
to connect the schema. This facilitates not only strong typing but also query navigation
through the information space, enabling joins to be visualized in the most natural way.
Notice how City is used as a join object type for this query. If attributes were used instead,
we would typically have to formulate this is a more cumbersome way. If composite
attributes are allowed we might use: List Employee.employeenr where Employee.city =
Branch.city and Branch.branchnr = 52. If not, we might resort to: List
Employee.employeenr where Employee.cityname = Branch.cityname and
Employee.statecode = Branch.statecode and Employee.country = Branch.country and
Branch.branchnr = 52. Apart from awkwardness, both of these attribute-based approaches
violate the principle of semantic relevance. Since the identification scheme of City is not
relevant to the question, the user should not be forced to deal explicitly with these details.

Even if we had a tool that allowed us to formulate queries directly in ER or OO
models, and this tool displayed the attributes of the current object type for possible
assimilation into the query (similar to the way Active query displays the roles of the
highlighted object type), this would not expose immediate connections in the way that
ORM does. For example, inspecting Employee.city does not tell us that there is some
connection to Branch.city. The only way to do this is to use the domains themselves as a
basis for connectedness, and this is one of the distinguishing features of ORM.

To illustrate other features of the query technology, it will help to show some SQL
code that can be automatically generated from ConQuer queries. Using the Rmap
algorithm [5], our conceptual schema maps to the relational schema shown in Figure 2
(for simplicity, domains are omitted). SQL queries apply to this.

FIGURE 2: The relational schema mapped from the ORM schema of Figure 1.

In Figure 2, keys and uniqueness constraints are indicated by underlining (primary
keys are doubly underlined where alternate keys exist). Optional columns are shown in
square brackets. A subset constraint (e.g. foreign key constraint) is shown as a dotted

USbranch (branchnr, year , rank)

Branch (headempnr , branchnr, cityname, statecode, country)

Employee (empnr, empname, branchnr, salary, cityname, statecode, country, [supervisor_empnr], [mainphone, [otherphone]])

Speaks (empnr, languagename)

Drives (empnr, carregnr)

Car (carregnr, carmodelname, [color])

LangUse (languagename, country)

1
1

<>

0ac

only where country = 'USA'

Conceptual Queries 9

arrow. Here the numbered qualification 1 enforces the subtype definition. For more about
subtyping in ORM, see [6].

ActiveQuery maps ConQuer queries to SQL for a variety of DBMSs, in the process
performing semantic optimization where possible by accessing the constraints in the ORM
schema. SQL code for query Q1 is shown below (S1). Notice how the conceptual query
shields the user from details about City’s composite reference scheme. Moving through an
object type corresponds to a conceptual join. Here the relational join is a result of the same
city playing two roles that map to separate tables, with no foreign key connection. In
contrast to this semantic domain approach, some query tools require foreign keys to
perform a join, and even force the user to specify what kind of join (e.g. inner or outer) is
associated with a foreign key connection: the limitations of such an approach are obvious.

S1 select X1.empnr
from Employee as X1, Branch as X2
where X1.cityname = X2.cityname
 and X1.statecode = X2.statecode

 and X1.country = X2.country
 and X2.branchnr = 52

ORM makes no use of attributes in base models. This helps with natural verbalization,
simplifies the framework, avoids arbitrary or temporary decisions about whether some
feature should be modeled as an attribute, and lengthens the lifetime of conceptual
queries since they are not impacted when a feature is remodeled as a relationship or
attribute. This semantic stability of ORM models, and hence ORM queries, gives it a major
advantage over ER, OO and lower level approaches.

For example, suppose that after storing the previous query, we change the schema to
allow an employee to live in more than one city (e.g. a contractor might live in two cities).
The uniqueness constraint on Employee lives in City is now weakened, so that this fact type is
now many:many. With most versions of ER, this means the fact can no longer be modeled
as an attribute of Employee.

Moreover, suppose that we now decide to record the population of cities. In ER or OO
this would require that City be remodeled as an entity type instead of as an attribute.
Hence an ER or OO based query would need to be reformulated. With ORM based
queries however, the original query can still be used, since changing a constraint or
adding a new fact type has no impact on it. Of course, the SQL generated by the ORM
query may well differ with the new schema, but the meaning of the query is unchanged.

As an even simpler example, suppose we wanted to list employee drivers and their
branches. In ConQuer we have:

Q2 üEmployee
+- drives Car

+- works for üBranch

Conceptual Queries 10

With our current schema, employees may drive many cars but work for at most one
branch. So the information is spread over two relational tables, and the SQL code is:

S2a select X1.empnr, X1.branchnr

from Employee as X1, Drives as X2

where X1.empnr = X2.empnr

However suppose that in an earlier version of our schema, employees could drive at
most one car. In that case, all the information is in one table and the SQL code is:

S2b select X1.empnr, X1.branchnr

from Employee as X1

where X1.carregnr is not null

Not only is this code sub-conceptual (null values are an implementation detail) but it
is unstable, since a simple change to a conceptual constraint on the driving relationship
requires the code to be changed as well. If we now relaxed our schema to allow
employees to work for more than one branch (e.g. contract employees) the SQL code
would need to be changed again since an extra table is needed to store the works
relationship. In all these cases, the ConQuer query stays valid: all that changes is the SQL
code that gets automatically generated from the query.

An OO query approach is often more problematic than an ER or relational approach,
because there are many extra choices on how facts are grouped into structures, and the
user is exposed to these structures in order to ask a question. Moreover these structures
may change drastically to maintain performance as the business application evolves.

In the real world, changes often occur to an application, and work is required to cater
for the changes in the database structures. Even more work is required to modify the code
for stored queries. If we are working at the logical level, the maintenance effort can be
very significant. We can minimize the impact of change to both models and queries by
working in ORM at the conceptual level and letting a tool look after the lower level
transformations.

The simple examples above illustrate how ConQuer achieves semantic clarity,
relevance and stability. Let’s look briefly at its semantic strength (expressibility). Further
details on this may be found in [2]. The language supports the usual comparators (=, <, in,
like etc.), logical operators (and, or, not), and bag functions (count, sum etc.), as well as a
maybe operator for conceptual left outer joins. Subtype/supertype connections appear as
“is” predicates.

Suppose we want to list the branch number of any USbranch that did not achieve the
top rating before the year 1998, as well as the name, and cars (if any) of the branch’s head.
This may be formulated in ConQuer thus:

Conceptual Queries 11

Q3 üUSbranch
+- not achieved Rank = 1 in Year < 1998

+- is Branch
+- is headed by Employee

+- has üEmployeeName
+- maybe drives üCar

Notice how easy this is, especially if the tool provides the predicates for each object
type. As a minor point, ActiveQuery currently uses the syntactical variant “possibly” for
“maybe”. You are invited to provide the lengthy SQL for this query. Although
straightforward, notice how you need to locate the relevant four tables and then decide on
what columns to join, what kinds of join to perform (inner or outer) and then add the
intra-table restrictions. In other words, to do this in SQL you need to worry about low
level implementation details.

The most powerful feature of ConQuer is its ability to perform correlations of arbitrary
complexity. As a simple correlation example, consider the query: Who supervises an
employee who lives in the same city as the supervisor but was born in a different country
from the supervisor? Here is one way of expressing the query in ConQuer:

Q4 üEmployee1

+- lives in City1

+- was born in Country1

+- supervises Employee2

+- lives in City1

+- was born in Country2 <> Country1

When an object type appears more than once, ActiveQuery automatically appends
subscripts to distinguish the occurrences. You can assert that the instances are equal by
equating the subscripts (e.g. City1). More generally, you can use comparators to compare
instances (e.g. Country2 <> Country1). Try this in SQL. It’s not that hard, but you have to
admit it’s easier in ConQuer!

As a harder example that includes a function as well as nasty correlation, consider the
query: Who owns a car, and does not drive more than one of those cars (that he/she
owns)?. In English, correlation is often achieved through pronouns. Here there is a
correlation on cars (“those”) as well as employees (“he/she”). This query may be
formulated as Q5. Recall that object variables with identical subscripts are correlated. This
is used here to correlate cars (Car1). The for-clause has only one instance of Employee in
the query body to reference, so no subscripts are needed to perform the correlation for
employees.

Conceptual Queries 12

Q5 üEmployee
+- owns Car1

+- not drives Car1

 +- count(Car1) for Employee > 1

Equivalent SQL is shown below. Because the correlation stems from a function
argument inside a negated function subquery, the correlation concerns membership in a
set, not just equality with an outer instance (see italicized code). This is quite tricky, and
even experienced SQL users might get it wrong.

S5 select X1.empnr
from Owns X1
where X1.empnr not in (

select X2.empnr
from Drives X2
where X2.car in (select X3.car from Owns X3

 where X3.empnr = X1.empnr)
group by X2.empnr
having count(X2.car) > 1)

Last year I taught advanced SQL to a group of 4th year university students who
already had years of experience with SQL. I then gave them a simple introduction to
ConQuer, followed by a list of varied questions in English that they had to translate into
both ConQuer and SQL. Even without tool support, they had little trouble with the
ConQuer formulations, but they experienced great difficulty with the SQL. I admit the
SQL questions were pretty nasty (lots of correlated subqueries and functions), but I set a
wide range of questions without trying to bias them in favor of either language. At any
rate, the relative performance was so dramatic that it reinforced my impression that
ConQuer is much easier to learn than SQL. Of course, more extensive trials are needed for
a reliable empirical evaluation of the language.

Business Rules
Although ORM’s graphical notation can capture more constraints than popular ER
notations such as IDEF1X and UML class diagrams, it still needs to be supplemented by a
textual language to provide a complete coverage of the kinds of constraints and derivation
rules found in business applications. Research is currently under way to adapt ConQuer
for this purpose. This is analogous to the way that SQL is used for formulation of queries
as well as declaration of constraints (e.g. check clauses) and derivation rules (e.g. view
declarations). All of ORM’s graphical constraints can be verbalized in FORML, an ORM
language that was designed specifically for this purpose. The ConQuer language is more
general, can be used to define other business rules, and can be mapped automatically to
SQL. Hence it could be used as a very high level language for capturing business rules in
general.

As a trivial example of a derivation rule, Figure 1 includes a definition of the derived
fact type: Branch is in Country. Now that you have some familiarity with ConQuer, you

Conceptual Queries 13

will recognize this definition as a ConQuer query. ActiveQuery allows you to define
derived predicates, and store these definitions. These derived predicates (or “macros”)
can then be used just like base predicates in other queries. Figure 1 also includes a subtype
definition for USbranch. A subtype may be thought of as a derived object type, with its
definition provided by a ConQuer query. Note that the subtype definition for USbranch
made use of a derived predicate.

A constraint may be viewed as a check that a query searching for a violation of the
constraint returns the null set. Hence constraints may also be expressed in terms of
queries. Various high level constructs can be provided in the language to make it more
natural than the not-exists-check-query form provided in SQL. Although there is no room
here to go into detail, it should be clear that this approach is quite powerful.

Conclusion and Acknowledgement
This article outlined the benefits of lifting queries to the conceptual level, and argued that
a truly conceptual query language should provide semantic strength, clarity, relevance
and stability. It then indicated that ORM-based languages are especially suited for
meeting these criteria, and gave examples of how queries can be formulated in one such
language, ConQuer, and then mapped to SQL. Finally, it was noted that a conceptual
query language can be used not just for queries but also for the declaration of business
rules.

The ActiveQuery tool was constructed by a team of talented developers, now working
at Visio Corporation. The fundamental research on the design of ConQuer and the
associated mapping to SQL was performed jointly by Dr Anthony Bloesch and myself,
and parts of this article are based on two of our papers [1, 2], in which a more formal
discussion of the language’s semantics is provided.

References
1. Bloesch, A.C. & Halpin, T.A. 1996, ‘ConQuer: a conceptual query language’, Proc. ER’96:

15th Int. Conf. on conceptual modeling, Springer LNCS, no. 1157, pp. 121-33.

2. Bloesch, A.C. & Halpin, T.A. 1997, ‘Conceptual queries using ConQuer-II’, Proc. ER’97:
16th Int. Conf. on conceptual modeling, Springer LNCS 1131, pp. 113-26.

3. Cattell, R.G.G. & Barry, D. K. (eds) 1997, The Object Database Standard: ODMG 2.0, Morgan
Kaufmann, San Francisco CA (see ch. 4 for a definition of OQL).

4. Embley, D.W., Wu, H.A., Pinkston, J.S. & Czejdo, B. 1996, ‘OSM-QL: a calculus-based
graphical query language’, Tech. Report, Dept of Comp. Science, Brigham Young Univ.,
Utah.

5. Halpin, T.A. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice Hall
Australia, Sydney.

6. Halpin. T.A. 1995, ‘Subtyping: conceptual and logical issues’, Data Base Newsletter, ed. R.G.
Ross, Database Research Group Inc., vol. 23, no. 6, pp. 3-9.

Conceptual Queries 14

7. Halpin, T.A. 1996, ‘Business rules and Object Role modeling’, Database Programming and
Design, vol. 9, no. 10 (Oct. 1996), pp. 66-72.

8. Hofstede, A.H.M. ter, Proper, H.A. & Weide, th.P. van der 1996, ‘Query formulation as an
information retrieval problem’, The Computer Journal, vol. 39, no. 4, pp. 255-74.

9. Meersman, R. 1982, ‘The RIDL conceptual language’, Research report, Int. Centre for
Information Analysis Services, Control Data Belgium, Brussels.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

